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a b s t r a c t

Energy demand-side management, especially empowered by the fine-grained smart meter data, plays a
significant role in the rational allocation of energy, monitoring and supervision of energy consumption
behaviors. Through the in-depth demand analysis including quantification of energy consumption dy-
namics and consumer preferences, energy decision-makers can develop reasonable and forethoughtful
energy efficiency plans and demand-response programs. Previous work in energy-demand behavioral
research relied primarily on ideal socio-economic models or data-driven approaches, both of which lack
flexibility, intuition and interpretability. This paper proposes a novel spatio-temporal visual analysis
approach for urban energy consumption pattern discovery in order to identify energy-saving potentials,
plan energy supply and improve energy efficiency. In this approach, energy consumption time series are
embeded into a two-dimensional scatterplot for coordinated visual exploration. Users can interactively
explore and discover different patterns for decision-making purposes. In addition, we propose the
method for modeling energy demand shift patterns based on a potential flow method and integrate it
into a pattern exploration tool. The proposed approach is comprehensively evaluated through empirical
studies using the real-world electricity consumption data from Pudong district, Shanghai. We identify
five typical energy consumption patterns and demand shift patterns across different geographical lo-
cations, which can be well interpreted by the knowledge of energy consumption in the area of interest.
The results demonstrate the effectiveness of the proposed approach and the tool. This tool can be in-
tegrated into smart energy systems for a better understanding of user energy consumption behaviors and
preferences.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Urban energy consumption accounted for 70% of the global
energy supply in 2015. The International Energy Agency (IEA) also
forecasts that 90% of global energy growth will be in cities, ac-
cording to the official report [1]. The demand analysis of energy,
including the form of electricity, heating, cooling, industry, build-
ings, and transportation to the identification of more achievable
and affordable solutions to the transformation into future renew-
able and sustainable energy solutions is essential to the future
wujunqi@tju.edu.cn (J. Wu),
L. Huang), pernn@dtu.dk
energy systems [2e4]. Energy demand or energy consumption
analysis lays the prerequisite for energy planning and policy-
making in modern cities [5,6], thus also aligns and supports the
energy strategy and industrial innovation target of the sustainable
development goals (SDG) of United Nations [7]. Traditionally, en-
ergy consumers’ preferences were reduced to an ideal socioeco-
nomic metric, and conduct empirical studies, such as analysis
energy data of a particular region or a period of specific citizens,
businesses, and industries. In this paper, we develop a visual
analysis based approach that allows users to investigate energy
consumption patterns combining their expertise with observable/
discoverable visual patterns. We propose an spatio-temporal
analysis framework and develop a web-based user interface link-
ing to energy data to support smart energy management.

Energy demand behavioral research can improve the under-
standing of consumption patterns, be constructive for demand-side
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management, and impact relevant policy decisions [6]. With a
thorough demand-side analysis, such as quantified energy con-
sumption, understanding energy consumption behaviors and
preferences, smart energy users or energy planners to make proper
energy efficiency responses. Previous works in this field mainly use
ideal socioeconomic models or data-driven models and has lacked
the flexibility, intuition and interpretability. Economists prefer to
employ several socioeconomic metrics computed from coarse-
grained data, statistical measurements, and empirical numerical
models to assist decisions. Such metrics are useful to understand
trends or patterns, but have difficulty in revealing the reasons
behind. The fast development of the Internet of Things in smart
metering and remote sensing technologies in energy systems has
accumulated massive fine-grained energy data. The data-driven
approach utilizes machine learning technologies including
frequent pattern discovery, clustering algorithms, and others, are
borrowed to energy communities to discover, query, and under-
stand the nontrivial, hidden, but potential useful patterns in the
fine-grained energy data. However, such approaches usually
require an in-depth understanding the energy domain problems,
simultaneously grasping the machine learning algorithms and
programming capability. This is challenging for the majority of
energy domain researchers and industrial analysts.

We fill this gap by bringing a visual analytics based approach for
the energy demand analysis. The energy consumers’ location infor-
mation, energy consumption fluctuations over time, and consumption
patterns are visualized coordinately in the same web-based tool, Po-
wer Consumption Pattern Explorer (PCP).With the tool, smart system
users can explore hidden patterns from overview to fine details
through an intuitive way without requiring machine learning
background knowledge. They can obtain insights into complex
energy problems by amplifying domain expert’s expertise with
interactive knowledge discovery; this approach is more flexible
than machine learning based approach, as the smart system users
can interactively analyze crow energy demand behaviors by mouse
brushing and observing spatial and temporal energy demand re-
sults coordinately; it has sufficient interpretability owing to the
embedding algorithm can preserve global and local data structure
and reveal semantics. As we are heading toward the era of Artificial
Intelligence 2.0, hybrid intelligence with domain knowledge in the
analysis can be an effective approach for shooting complex energy
problems [8]. We believe that visual analysis will become an
indispensable component for the next generation of smart energy
systems, e.g., preventing, diagnosing and addressing emerging
challenges.

In summary, this paper makes the following contributions:

e A visual pipeline for energy consumption pattern analysis is
proposed, and a user-friendly tool is implemented to support
knowledge discovery through user interactions.

e The methods for identifying typical patterns and for spatio-
temporal pattern analysis are proposed. The typical patterns
can help understand user consumption behaviors, while the
shift patterns can help balance energy supply across different
geographical locations. The typical patterns and demand dy-
namics can be explored intuitively and interactively.

e A visual analysis framework is proposed and the user-friendly
tool is implemented. This paper evaluates the proposed
method by an empirical case study using the real-world elec-
tricity consumption data from Shanghai Pudong district. Five
typical consumption patterns are identified, as well as different
spatio-temporal shift patterns. The case study validates the
effectiveness of the proposed visual analysis framework in
discovering spatio-temporal patterns at the urban scale.
2

The remainder of the paper is structured as follows: Section 2
reviews the related work. Section 3 presents the framework. Sec-
tion 4 evaluates the framework through an empirical case study.
Section 5 discusses the related issues. Section 6 concludes the paper
and presents the future work.

2. Related work

2.1. Data-driven energy demand analysis

With the demand-side analysis, utilities can provide energy ef-
ficiency recommendations and personalized services (aka. energy
demand side management). Since the seminal work of data-driven
energy demand analysis in 1984 [6], the majority of the research
have been focused on energy consumption pattern analysis and
demand forecasting. Unsupervised learning based approaches have
received an increasing attention in the energy consumption pattern
analysis, due to the good interpretability. Algorithms, such as
clustering, frequent pattern extraction, etc., help to uncover inter-
esting patterns to better understand the underlying behaviors of
the crowd. Whilst the energy demand forecasting relies heavily on
supervised learning algorithms. It is estimated that more than half
of the work (more exactly about 72%) in the energy sector utilize
shallow learning algorithms, including artificial neural networks
and support vectormachine [9]. Recently, with the rapid advance of
the deep neural network, some popular deep learning frameworks
including LSTM, RNN and their derivatives [10] have been widely
used for energy demand forecasting.

Pattern analysis was introduced to diverse energy consumer
behaviorial analysis tasks. Hunt et al. create an energy demand
model considering the trends and seasonal effects [11]. Gaussian
distribution and the Kullback-Leibler divergence-based clustering
method can be used to analyze household characteristics based on
consumption patterns [12]. An association rule mining based
quantitative approach is proposed to analyze residential electricity
consumption patterns [13]. As occupant behavior is closely related
to energy consumption, the frequent pattern mining is used to
analyze variations of human behavior in Ref. [14], including varia-
tion in energy consumption, time and appliance use. Markov chains
are extensively used to model occupant behavior and then to es-
timate energy demand and its fluctuations [15]. However, Markov
chains have limitations in accurately capturing occupants’ coordi-
nated behavior and are prone to overfitting. Rich features related to
the activities of coordinated occupants can be used to compare the
behaviors between an occupant and its neighbourhood [16]. The
customers with a similar load pattern can represent that they may
have similar household structure or living habits. Therefore, load
pattern analysis can be a crucial component for effective energy
operation andmanagement. Utilities can use segmentation analysis
to improve their operations, design demand-response programs
and provide personalized services. To date, clustering is one of the
most used methods for customer segmentation analysis, by which
time series are converted into reduced feature vectors and then
grouped into different groups according to their distances [17].

2.2. Visual analysis for energy management

Visualization and visual analysis is an emerging interdisci-
plinary subject for analysis, reasoning, and decision-making
through interactive visual interfaces [18]. Users can use visual
analysis tools and technologies to obtain knowledge from massive,
dynamic, uncertain or even conflicting data. Visual analysis enables
users to detect expected information, explore unknown content,
provide rapid, testable and understandable evaluations, and pro-
pose effective methods for evaluating communication. Visual
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visualization and visual analysis mainly include [19]: analytical
reasoning that provides users with in-depth knowledge to directly
support assessment, planning and decision-making; visual repre-
sentations and interactions that use the high-bandwidth channel
directly connecting the human visual system to the brain, and
provide users with technical support to simultaneously observe,
explore and understand a large amount of information; data rep-
resentations and transformations that transform diverse data
containing conflicting content and dynamic changes into data
representations that can support visualization and analysis; sup-
porting the production, presentation and dissemination of analysis
results (Production, Presentation and Dissemination) - visual
analysis results are transformed into communication information
in the background to achieve an effective exchange of information
with different audiences. The methodology has received an
increasing research interest as it focuses on analytical reasoning
facilitated by interactive user interfaces, and as a problem-driven
data analysis technique, it helps users focus on the exciting as-
pects of data and improve data exploration efficiency, thus poten-
tially extend human cognitive ability [20e22]. Using a variety of
visualization techniques, humans can perform effective cognitive
analysis, extract knowledge and reveal patterns from data. Visual-
ization and visual analysis have been introduced in different
application domains such as in public opinion analysis [23],
research hotspot evolution [24], air pollution source analysis [25],
financial risk management [26,27] and many others. Usually built
on top of the statistical analysis or data mining layers, visual
analysis adopts a human-machine interaction methodology to help
target users such as decision makers, interactively gain insight into
complex problems by combining them with domain knowledge.
Since we consider energy demand as a problem in the analysis of
spatio-temporal patterns, we briefly present the related work.

The visualization of spatio-temporal data has been extensively
researched and applied in different fields [28,29]. A majority of the
studies are trajectory analysis [30e32]. Pattern extraction can be
applied to obtain significant latent patterns from the movement
data. Space-time cube representation is an information visualiza-
tion technique where spatio-temporal data points are mapped into
a cube [33,34]. AirVis is designed to assist domain experts to effi-
ciently capture and interpret the uncertain propagation patterns of
air pollution based on graph visualizations [35]. Multidimensional
spatio-temporal data are modeled as tensors and then decomposed
to extract the latent patterns for comparison and visual summari-
zation [36]. Flow maps are used to track clustering behavior, and
direction maps draw on the orientation of vectors, are used to
precisely identify the location of events [37]. Kim et al. proposed a
gravity-based flow extraction model by extending a density dif-
ference model, which can effectively separate human movement
from spatio-temporal data without using trajectory information
[38]. A population-based vector field was proposed to visualize the
dynamics of temporal and geographical demand. By representing
transportation systems as vector fields that share the same spatio-
temporal domain, demand can be projected onto the systems to
visualize the relationships between them [39]. Miller et al. intro-
duced the DayFilter process for building performance evaluation,
which uses a set of temporal data mining techniques including SAX,
clustering and visual analysis [40]. Within the system, discrep-
ancies, or irregular daily patterns are filtered and marked for in-
depth and detailed analysis for potential energy saving opportu-
nities. Motifs are detected and grouped using k-means clustering
algorithm.

In the energy sector, the visualizations such as graphs and bar
charts have been extensively used to compare energy consumption
over time. The seminal literature presents several power system
visualization techniques to help analyze the relationships between
3

network power flows using animation, contouring of bus and
transmission line flow values, and interactive 3D visualization [41].
Coincidence factor-based heatmap is the visualizationmethod used
to identify peak demand changes and avoid power outage [42].
Calendar-type pixel visualizations, with color enhancement of
anomaly scores, integrated with the spatial visualization, line graph
and trees, are designed to detect anomalies of energy consumption
data [43]. FigureEnergy is an interactive visualization tool that al-
lows users to annotate and manipulate a graphical representation
of their electricity consumption data; and annotate their past en-
ergy consumption by understanding when and how. To do so, a
certain amount of energy was used in Ref. [44]. Operational per-
formance is integrated with building information modeling (BIM)
as a visualization dashboard to support the building energy man-
agement [45]. Ambient and artistic visualization for residential
energy use feedback is explored, where Phyllotaxis design, Hive
design and Pinwheel design in energy use are discussed [46].
Matches, Mismatches, and Methods for Multiple-View workflows
for energy portfolio analysis are discussed [47]. Mosaic groups
mapping encoded by household energy use combines with geo-
demographics to enable a better understanding energy user types
in the UK [33]. GreenGrid is designed to explore the planning and
monitoring of the Electricity Infrastructure. Geographic layout
coming with a weighted network interface is designed to quickly
identify where the system would be most likely to separate if an
uncontrolled islanding event were to occur [48]. Liu et al. devel-
oped a data pipeline [49,50] and a dashboard, SMAS [51], to
streamline the whole process of smart meter data analysis,
including data pre-processing, cluster scaling, segmentation and
visualization on a map.

This paper aims to analyze and discover energy demand shift
patterns through our proposed novel interactive visual analysis
framework. The discovery of shift patterns focuses on investigating
the effects of the crowds’ spatial mobility on energy consumption
over time. The shift pattern analysis has received much less
research focus than typical consumption pattern analysis. Most of
the current work focuses on the spatial variability of energy con-
sumption, sources and aggregation. Our method differs substan-
tially from these existing works as ours can discover the spatio-
temporal shift patterns of energy demand. This involves
analyzing the dynamics of energy demand shifts on both spatial
and temporal dimensions.

3. Problem statement and methods

This section first provides an overview of the visual analysis
framework, then describes the pattern recognition methods, and
finally introduces the visual analysis tool.

3.1. Overview

The proposed visual analysis framework has a three-layer ar-
chitecture, consisting of a data layer, a visualization layer, and an
exploration analysis layer, as shown in Fig. 1.

In the data layer (left in Fig. 1), the energy consumption data are
collected and pre-processed before stored in the database. The raw
data are usually not ready for subsequent analysis, e.g., with
abnormal and missing values. Thus, data pre-processing is crucial
in ensuring data quality for the subsequent pattern detection. The
well-prepared data are then forwarded to the next layer, where
visual analysis is performed.

The visualization layer consists of temporal and spatio-temporal
pattern analysis components (middle in Fig. 1). Clustering high
dimensional data is usually time-consuming and difficult to achieve
good results [52]. Therefore, in this paper, t-SNE [53] is used to



Fig. 1. Overview of the proposed visual analysis framework.
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reduce the time series dimensionality before pattern analysis. It
segments households according to the similarities of energy con-
sumption patterns. In comparison, the potential flow-based
modeling algorithm can capture the spatial shift patterns over
time, including spatial shifts of energy demand and peak load.
According to the shift pattern, the supply-side energy flexibility
potential can be determined, and utilities can better plan energy
supply at different temporal and spatial scales.

The exploration analysis layer is to gain knowledge from the
visualization layer (right in Fig. 1). This layer provides a visual
analysis interface where users can get insight into the data by in-
teractions. Users can explore data in various ways, ask different
questions, and answer their questions through visual analysis re-
sults on the view. The visual analysis tool, PCP, is designed to
answer the following two classic questions, “What is the con-
sumption trend or pattern over time?” and “Does the crowd mobility
affect energy demand?“. The analysis process consists of three steps:
data exploration through user interactions, idea verification and
knowledge acquisition.

3.2. Data

The data used in this paper are daily resolution electricity con-
sumption data from Pudong District in Shanghai, China. We
collaborated with the Shanghai National Grid Company and
collected the data from 2015 to 2018. The data comprise approxi-
mate 10,000 household energy customers, which were obtained by
uniformly sampling from the full set of the customers, which is over
one million. Notably, the data we obtained is all residential.
Geographical coordination is also available to these customers.
Table 1 shows a sample of the data consisting of customer identity
(customerID), time series attributes (pap_r (total demand of the
day), pap_r1 (peak period demand of the day, ranging from 6:00 to
22:00) and pap_r2 (off-peak period demand of the day, ranging
Table 1
Sample rows of the daily-grained energy demand data.

CustomerID pap_r pap_r1 pap_r2 Date Latitude Longitude

1100216777 6.03 5.17 0.86 2017-11-25 31.121.05 121.55181
1100216777 32.48 21.31 11.16 2017-07-17 31.121.05 121.55181
1100216777 5.77 4.90 0.87 2017-09-15 31.121.05 121.55181
1100216777 22.16 13.90 8.25 2017-08-25 31.121.05 121.55181
1100216777 13.81 6.67 7.14 2017-07-16 31.121.05 121.55181
1100216777 6.74 6.00 0.75 2017-11-12 31.121.05 121.55181
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from 22:00 to second day 6:00)), the measuring date (Date) and the
geographical coordinate (Latitude and Longitude).

3.3. Data preprocessing

The spatio-temporal analysis of energy consumption data en-
ables a better understanding of the environment’s effects and
consumer behaviors over time. The first step of data analysis is data
preprocessing, as the data may have quality issues, e.g., with noise,
irregularities and missing values. Data quality can affect the results
of visual analysis. However, data preprocessing is a non-trivial task
that involves several cleansing steps. In this paper, these steps are
performed to make the data ready for subsequent visual analysis,
including anomaly removal, normalization, and dimensionality
reduction, as described below.

Window-based convolution smoothing is used to smooth time
series before further analysis. The smoothing operation creates an
approximation function by removing noisy data and reconstructing
the curve through interpolation to follow the trend of time series
and capture the significant pattern. Smoothing can reduce random
variations of a time series and provide amore accurate and intuitive
view for potential patterns.

Z-Score is used to normalize energy consumption time series
[54]. The Z-score is a signed fraction of a standard deviation by
which the value of an observation or data point is higher than the
average of the observed or measured values. The observations
above the mean have a positive standard score, while the obser-
vations below the mean have a negative standard score. After
calculating the standard score, the normalized energy consumption
is plot into a uniform normal distribution, by which the impact of
abnormal variations on the trend of a time series can beminimized.

3.4. Temporal pattern discovery for energy consumption

This section presents the embeddingmethod to visualize energy
consumption patterns that can be used, for example, to investigate
consumer behaviors, segment customer groups, and design tar-
geting demand-response programs.

Embedding technologies usually project high dimensional data
into a lower space while keeping the global and local data relative
structures. The most widely used embedding technologies are
Principal Component Analysis (PCA) [48], a linear dimensionality
reduction technology due to its efficiency and convenience. How-
ever, it usually deals well with data samples with lower than ten
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attributes and has difficulty processing real high-dimensional data
sample features. Nonlinear dimensionality reduction techniques
are also widely used. The representative nonlinear dimensionality
reduction techniques include t-distributed Stochastic Neighbor
Embedding (t-SNE) [53] and Uniform Manifold Approximation and
Projection (UMAP) [55]. In this paper, t-SNE has an on par perfor-
mance with UMAP on the energy consumption data (see Experi-
ments), thus we choose t-SNE as the representative method and
report the results.

Formally, t-SNE can be described as follows: given a set of n high
dimensional data objects x1;…; xn, the probability of similarity for
two data objects, xi and xj, is represented as Pij. According to [553,
the similarity of xj to xi is a conditional probability, Pijj. Whether xj
will be picked as xi’s neighbor or not is determined by the proba-
bility density under the Gaussian distribution centered at xi. The
conditional probability Pijj is defined as follows:

Pijj ¼
exp

�
� ����xi � xj

����2.2s2i
�

P
ksiexp

�
� jjxi � xkjj2

.
2s2i

� (1)

where si is the bandwidth of the Gaussian kernel, k , k is the dis-
tance. Pij can then be calculated by the following formula:

Pij ¼
Pjji þ Pijj

2n
(2)

Besides, the similarity probability of a data object to itself is set
to 0. The purpose of t-SNE is to obtain a low dimensional spatial
distribution reflecting the similarity Pij as much as possible through
iterative learning. To achieve this, it uses the method that is similar
to obtain Pij to calculate the similarity probability of the low
dimensional data objects yi and yj, which is defined as follows:

Qij ¼
�
1þ

������yi � yj
������2��1

P
ksl

�
1þ jjyk � yljj2

��1 (3)

where y1;…; yN are the data objects in a low dimensional space, k ,
k is the distance, k and l are between 1 andN. Here, the heavy-tailed
Student t-distribution [56] (with one degree of freedom as same as
the Cauchy distribution) is used to calculate the similarity between
low-dimensional points, so that different objects can be placed
further apart in a low dimensional space. The similarity probability
of a data object to itself is set to zero.

Last, the position of the data point in the low dimensional space
is minimized by Kullback-Leibler divergence between the proba-
bility distribution P of the high-dimensional space and the proba-
bility distribution Q of the low-dimensional space, which is defined
as follows:

KLðPjjQÞ¼
X
isj

Pij log
Pij
Qij

(4)

The Kullback-Leibler divergence is minimized using the Sto-
chastic Gradient Descent (SGD) method [57].

In this paper, Euclidean distance is used as the distancemetric to
measure the similarity of data points in t-SNE [58]. The distance
between two points in Euclidean space is the length of a line
segment between them, defined as

dðp; qÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq:x� p:xÞ2 þ ðq:y� p:yÞ2

q
(5)

where p; q are two data points shaped like ðx;yÞ.
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With a visual analysis tool, users can interactively select nearby
points and highlight time series patterns by superimposing them in
a line graph. The position of scattered location icons (or points) on
the map can help users understand the geographic distribution of
objects with similar patterns. In this way, customers with similar
consumption behavior can be discovered interactively using the
tool.

3.5. Spatio-temporal demand shift modeling for energy
consumption

Understanding the spatio-temporal patterns of energy con-
sumption can help utilities improve operations, develop energy
strategies and offer personalized services. For electricity con-
sumption data, we found that there exist demand shifts across
different geographical locations over time. This raises an interesting
question about how to visualize these demand shifts in a user-
friendly way to help utilities balance energy supply and improve
flexibility. This section will describe the potential flow-based
approach proposed to model energy demand dynamics across
spatial and temporal dimensions.

In fluid dynamics, the potential flow describes the velocity field
as the gradient of a scalar function: the velocity potential. As a
result, a potential flow is characterized by an irrotational velocity
field, which is a valid approximation for several applications.
Therefore, we can observe that the geospatial energy demand
changes continuously over time, and thus the demand is a con-
tinuum occupying a simply connected region in the time dimension
with an irrotational characteristic. Inspired by the advancement of
fluid dynamics and continuum mechanics, the continuum can be
modeled as a potential flow [59].

This potential flow-based modeling algorithm is explained by
the schematic diagram in Fig. 2. First, the energy consumption data
are collected and sampled using the weighted sampling method
[60]. This sampling method is used because it can effectively
minimize bias [60]. Weighted sampling is defined as adding
weights to the original data to measure its significance. The higher
the weight of a data point, the more critical it is in the data set.
What’s more, the weighted sampled data can make the results of
the kernel density estimation more accurate. In this step, the data
points are defined as a ternary vector containing the latitude and
the longitude of each user as well as the average power con-
sumption as weights. The dynamics of the energy demand over
time is visualized as a scatter plot at different times, e.g. t1 and t2 in
Fig. 2a.

Then, the weighted sampled data are fed into the kernel density
estimation algorithm, and the kernel density estimation matrix is
calculated for different moments, and each value in the matrix
corresponds to the strength of energy demand with a different GPS
coordinate. We encode thematrix values as gradient colors to show
the different energy demand strengths, as shown in Fig. 2b. In the
end, generated by the difference obtained by subtracting the kernel
density estimation matrix at different times, a graph of energy
demand variation encodes the energy demand dynamics in both
spatial and temporal dimensions, as shown in Fig. 2c.

By calculating the gradient of this matrix, we obtain the direc-
tion of the energy demand shift, which is the offset ðdx; dyÞ for the
original GPS coordinates. Original GPS coordinates ðx; yÞ correspond
to the arrow’s tail coordinates, and the head coordinates of the

arrow are ðx þ dx;y þ dyÞ. The length of the arrow
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxÞ2 þ ðdyÞ2

q
,

is the rate of energy demand shift. The longer the length of the
arrow, the more rapid the demand changes. Such a flow map de-
scribes how energy demand shifts in space and time, quantitatively
and qualitatively.



Fig. 2. Schematic diagram of energy demand shift modeling. The procedure for modeling the energy demand shift can be divided into three steps: 1) The locality data is weighted
by the energy consumption at each moment; 2) Strength maps of the energy demand for each moments are calculated through kernel density estimation; 3) Modeling and
visualization of the energy demand shift based on potential-flow (see Section 3.5).
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To model the spatial energy demand, a kernel density estima-
tion based approach is proposed to encode discrete household
energy consumption into a continuous representation, which can
efficiently generate a smoother vector field. In detail, let x1;…; xn be
the samples of energy customers who are the GPS locations in this
study. Each sample is a 2d-variable random vector drawn from a
common distribution described by a force function S. The following
formula is used to estimate the energy demand strength of the
population.

bShðxÞ¼ Xn
i¼1

ciKHðx� xiÞ (6)

where x ¼ ðlon; latÞT , xi ¼ ðloni1; lati2ÞT , i ¼ 1;…;n, are 2D vectors;
ci is a normalized value of average energy consumption used to re-
weight demand strength with respect to geographic distribution; H
is bandwidth (or smoothing), a d� d matrix, which is symmetrical
and positive definite; K is the kernel function, which is a sym-
metrical multivariate density. The kernel function is defined as
follows:

KHðxÞ¼
1
n

����Hj�1=2KH

�
H�1=2x

�
(7)

In this paper, the Gaussian kernel is chosen to estimate the
strength of demand because it can provide a reasonable estimate
for a small data set. However, for a large or medium data set, the
Epanechnikov kernel can be a better option for its lower compu-
tational complexity [61].

With the kernel density matrix (strength map), the temporal
dynamics of the energy demand over the time from t1 to t2 can be
modeled by Equation (8). The temporal dynamics can be obtained
by calculating the gradient of the demand strength difference.

Shiftt1;t2 ¼VðSt2 � St1Þ (8)

The vector flow fields (the arrows) represent the shifts in energy
demand, which are visualized and analyzed by the visual analysis
tool developed in this paper.
3.6. Visualization and visual analysis user interface

This section presents the visual analysis tool, Power Consumption
Pattern Explorer (PCP).2 The user interface design follows Shnei-
derman’s mantra [20] of “Overview first, zoom and filter, then details-
2 https://pcp.scicloud.site.
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on-demand”. Fig. 3 shows the user interface, which consists of the
following three coordinated views:

e View A. This view displays the spatial information of the
sampled customers on a map. It supports users in selecting
differentmap types, displaying the customers’ geographic locations
via markers, and visualizing the spatial distribution density via a
heatmap and the energy demand shift via vector flow fields.

e View B. This view supports to display the energy consumption
time series for the customers selected in View C.

e View C. This view is the temporal behavioral navigator that al-
lows users to examine different energy consumption patterns or
demand shift patterns. The closer the points are to each other,
the more similar patterns they have.

The implementation of PCP follows a three-tier architecture,
data layer, analysis layer and visualization layer (note that this is a
software architecture that is different from the layered architecture
of the visual pipeline presented in Section 3.1). In the data layer,
PCP currently uses CSV files as the underlying database, but it
would be preferable to use a data management system, which will
be future work. Time series in the data layer is read and visualized
in the web-based user interface. In the analysis layer, all algorithms
are implemented in Python, including dimensionality reduction,
consumption pattern, and shift pattern discovery algorithms. The
user-interactive analysis can generate intermediate data, such as
the flow field arrows (Scalable Vector Graphics (SVG)) and the
associated latitude and longitude coordinates. These intermediate
data are saved as a GeoJSON file in the data layer. In the visuali-
zation layer, HTML5, CSS, and JavaScript are used to implement the
user interface. The JavaScript library, Leaflet.js [62] is used for map
visualization and d3.js [63] is used to visualize time series and
scatter plots as well as for interaction design.

4. Experiments

This sectionwill describe the used data and report the empirical
studies of energy consumption patterns and shift pattern discovery
using the proposed visual analysis method.

4.1. Empirical study and exploratory data analysis

This subsection reports the data statistics of the household
electricity consumption data. Fig. 4 shows the household spatial
distribution by a heatmap of energy consumption density. The
figure shows that the northern part of the Pudong district has a
higher household density than the southern part. The following
number confirms this visual analysis result. According to the census

https://pcp.scicloud.site


Fig. 3. The user interface of PCP. A user can select different clusters using the interactive scatter plot function of View C, then observe energy consumption patterns (View B) and
geographical distribution (View A) to find the user’s clusters of interest.

Fig. 4. Visualization of household spatial distribution by heatmap.
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data collected in 2010, 2/3 of the population lives in the northern
area, close to the city center, while 1/3 of the population lives in the
Southern area. The visualization result validates that it is plausible
to obtain the data using the uniform sampling method.

The distribution of electricity consumption is presented by fre-
quency histogram. Figs. 5 and 6 show the distribution of the daily
and annual consumption of households, respectively. Note that the
abnormal hourly consumption values were removed by Tukey’s
range test [64] before this visual analysis is performed (a ¼ 0:05),
which results in 1.2% of the rejected values, i.e., anomalies. The
hourly and yearly consumption values both show a positive skewed
distribution with a long tail, which means that most customers’
consumption is to the left of the average. From the results, 1/4 of
households consume less than 2.40 kWh per day and 3/4 less than
8.67 kWh per day; 1/4 of households consume less than 1145 kWh
7

per year and 3/4 less than 3016 kWh per year. The zero value fre-
quency is high in both figures, representing that no energy was
consumed on a particular day or household. It may be for the reason
that people are away or the home is not occupied.

Table 2 summarizes the yearly and daily consumption data
statistics, which include min-max values, mean value, quantities,
variance, standard deviation, skewness and tailedness (Kurtosis).
The last two measures quantify the skewness of the values visually
confirmed by the distribution figures.

Next, the aggregated daily electricity consumption of all cus-
tomers and the weather temperature time series (high and low) are
plotted on the same figure (see Fig. 7) to investigate their correla-
tion. The electricity consumption has a bimodal pattern, suggesting
that more energy was consumed in summer and winter. This
pattern can result from high-temperature days with air



Fig. 5. The distribution of daily electricity consumption of households.

Fig. 6. The distribution of annual electricity consumption of households.
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conditioning for cooling, and low-temperature days for heating.
Nevertheless, there is a comfort zone between 15 �C and 25 �C,
where there is neither heating nor cooling. In addition, the figure
indicates that electricity consumption decreased during the first
week of October. It is because this week is an extended holiday,
China’s national holiday. Many people were traveling and only
baseload was consumed, for example, by refrigerators.

With the visual analysis tool, PCP, users can interactively explore
hidden, implicit and useful information. The next subsection will
8

describe how to discover typical energy consumption patterns with
this tool.
4.2. Method selection: a comparison of embedding algorithms for
energy data

The embedding algorithms t-SNE and UMAP have become the
twomost popular methods for data dimensionality reduction. Both
methods work similarly to minimize the loss function by using



Table 2
Summary of the electricity consumption data statistics.

Statistics Yearly (kWh) Daily (kWh)

Minimum 0.00 0.00
Mean Value 2142 6.60
Maximum 9825 31.45
Q1 (Quantile 25%) 1145 2.40
Q2 (Median value) 2027 4.55
Q3 (Quantile 75%) 3016 8.67
Variance 1.83eþ06 38.06
Standard deviation 1353 6.17
Mean absolute deviation 1084 4.60
Skewness 0.62 1.65
Kurtosis 0.56 2.54
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gradient descent, which similar data points get closer, while
different data points get further apart [65]. However, if the algo-
rithm choice can make the computation results optimal when the
data are different remains questionable.

To investigate suitable dimensionality reduction algorithms for
our data, we use Euclidean distance as the similarity measure of
dimensionality reduction algorithms in our experiments to
compare and analyze the results of t-SNE and UMAP with different
initialization (see Fig. 8). From the figure, it can be seen that both
algorithms can identify similar energy consumption patterns. The
algorithm can identify several different clusters in the scatterplots.
However, the UMAP results are more compact and compressed in
terms of distribution and have a larger empty area. As a result, the
clusters of different patterns may overlap and the boundaries are
unclear, making visual interaction difficult. In addition, this affects
the aesthetics of the graph. In our data, the effect of the different
initialization of the algorithms on the results can be seen in the
difference of the scatter layout, but this does not affect the ability of
pattern discovery.
Fig. 7. The correlation between total daily electricity consumption and weather temperature
the weather temperature. For example, in summer, energy consumption peaks when the te

9

4.3. Semantic analysis for energy consumption patterns through t-
SNE projection

The visual analysis method for discovering typical temporal
patterns is presented in the following. The dimensions of time se-
ries are reduced to a 2D space using the t-SNE algorithm, which is
visualized as a scatter point in the scatter plot view. The time series
of electricity consumption with similar patterns are tightly
bundled. Therefore, typical patterns can be discovered interactively
by selecting the points placed closely in the view. Fig. 9 shows the
interactive view of the visual analysis system, in which five typical
patterns were discovered, which are described below.

(i) Idle pattern. The points representing the idle patterns are
aggregated at the bottom of the view like an ellipse (see
Fig. 9). The idle pattern is characterized by year-round elec-
tricity consumption of almost zero. However, after zooming
inwith the exploration tool, at a fixed date eachmonth, some
slight variations can be observed for some households,
meaning that these homes are possibility unoccupied but
regularly inspected. In contrast, the homes with zero con-
sumption maybe unoccupied throughout the year, e.g., new
apartments.

(ii) Bimodal consumption pattern. It is a major pattern with
two surge energy consumption periods in winter and sum-
mer. The bimodal pattern is most closely related to weather
temperature changes (see the correlation in Fig. 7). This is a
classic universal power pattern resulting from seasonal
temperature changes, as residential electricity consumption
varies with temperature. This pattern implies that more
electricity is used in summer and winter, while less in spring
and autumn. This is mainly due to the use of air conditioning
for cooling in summer and heating in winter. The tempera-
ture in Pudong district is usually above 30+C in summer.
According to our investigation, we found that more people
tend to turn on air conditioning in summer than in winter,
which explains why the peak of consumption in summer is
higher than in winter.
. As indicated, the dashed line of energy consumption is, to some extent, correlated with
mperature rises.



Fig. 8. Comparison of dimensionality reduction algorithms. We used random and PCA initialization for t-SNE (sklearn v0.24.0); and random and LE initialization for UMAP (umap-
learn v0.5.0). As for UMAP, all other parameters were kept as default, except the number of iterations (n epochs ¼ 1000). For t-SNE, all parameters were kept as default, except the
early exaggeration (early exaggeration ¼ 4), the learning rate (learning rate ¼ 1000) and the number of iterations (n iters ¼ 1000).

Fig. 9. Typical temporal power demanding patterns by tSNE.
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(iii) Constant high consumption pattern. There is a cluster with
a continuous high consumption mode separated from the
main body, located in the upper left corner of the view. This
mode is characterized by constant high consumption pattern
throughout the year and small fluctuations within a fixed
range. In contrast to the electricity consumption with a
bimodal model, the consumption with this pattern is higher
than the average daily consumption on most days. This
pattern can occur for several reasons, for example, a house-
hold with low-efficiency equipment or a big apartment.

(iv) Power-saving pattern. The clusters with this pattern are in
the bottom corner of the view, like a fish tail. The power-
saving pattern has approximately the same shape as the
bimodal pattern, but its consumption is much lower than the
10
bimodal pattern. The peak in winter is almost the same as in
spring and fall, and the summer peak season is relatively
short, mainly in August. This pattern may be that these
families live in new apartments equipped with energy-
efficient appliances, or that they are low-income families
who are very cautious about using too much energy.

(v) Suspicious pattern. The clusters with this pattern can be
found in the lower central part of the view. This pattern is
characterized by a low stable consumption before the fall.
However, the consumption after September becomes high
and fluctuates irregularly. The daily consumption is much
higher than average, which can be considered abnormal.
There are many reasons for this, for example, it can be caused
by irregular living habits. Although it is difficult to determine
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the real reason, the pattern can provide users the tip for a
tracking purpose.
4.4. Discovery of energy-demand shift pattern by potential-flow

This section will examine the shift pattern of electricity demand
in Pudong District using the quiver plot method. For better visu-
alization, the quiver plots in the following subsections show only
those changes where the difference in demand strength is greater
than 55% (see definition in Equation (8)).
4.4.1. Demand shift pattern at the daily scale
The Pudong district’s power consumption shift pattern is visu-

alized by the quiver plot method shown in Fig. 10. The result only
shows the shifts on the daily temporal scale, but the method can
also support the analysis of other temporal scales if a more
acceptable resolution of the data is used.

The quiver plot shows that the high energy demand changes
from commercial to residential areas when people go home after
work. The arrows’ tails point to the high demand area during the
day, while the arrows’ heads point to the area with a high demand
after the shifts. The length of arrows encodes the shifts’ demand
strength-the shorter length of an arrow, the slower the shift rate.

The two residential areas are marked with light red belts. The
left red belt covers several popular residential areas, including
Sanlin Town, Zhoupu Town, Weifangxin Town, and Lujiazui Town.
Both sides of the left belt are the main commercial areas, including
Huangpu River district to the left and Zhangjiang HiTech park to the
right. The Huangpu River district homes many industrial com-
panies, while the Zhangjiang HiTech Park homes many office
buildings. The energy demand in both commercial areas is shifting
to the residential area after work. The right red belt is also a resi-
dential area, and most of the people living there work in the
Zhangjian HiTech Park. Therefore, a similar shift pattern can be
seen in Fig. 10.
Fig. 10. The demand shift pa
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4.4.2. Demand shift pattern at the quarterly or annual scale
This subsection examines the shift pattern of high energy de-

mand on a quarterly or annual scale. Fig. 11 shows the shift pattern
of the energy demand over the quarters of 2017 using the full set of
the sampled data, d. The length of an arrow is proportional to the
strength of the electricity demand shift. Accordingly, the shifts of
the electricity demand first deviate from Q1 to Q2 from the com-
mercial area (arrow tails) to the residential area (arrow heads) (see
Fig. 11a). The shifts on the right-hand side converge from the res-
idential area (arrow tails) back to the commercial area (arrow
heads) from Q2 to Q3 (see Fig. 11b). However, the shifts of the
electricity demand deviate from the commercial area (arrow tails)
to the residential area (arrow heads) again from Q3 to Q4, like from
Q1 to Q2 with little difference (see Fig. 11c).

The following explains these shift patterns. First, the shift
pattern depicted in Fig. 11a may be caused by the traditional Chi-
nese holidays in Q1, including the long Chinese Spring Festival
(about two weeks), when most people stay at home and consume
more energy than usual. Second, the shift pattern shown in Fig. 11b
may be caused by the opening of Shanghai Disneyland in Q3 at the
location near the residential area. Third, Fig. 11c may be due to the
fact that Shanghai gradually entered the winter season. When the
weather gets colder, more people will prefer to stay indoors, which
consume more energy. This is especially the case in the residential
areas.

Fig. 12 shows the shift pattern over a yearly interval, i.e., fromQ1
2017 to Q12018 or from Q2 2017 to Q2 2018. Interestingly, although
the shift strength difference threshold is set far below 55%, no
significant shift in demand is observed, which means that the shift
caused by the crowd behavior in a high granular time interval is
negligible. It might also be dominated by the high-consumption
customers, which will be discussed in the next subsection.
4.4.3. Sensitivity analysis
The shift in demand is mainly caused by the difference in energy

consumption between different spatial areas. Since customers can
ttern at the daily scale.



Fig. 11. The demand shift pattern at the quarterly scale.

Fig. 12. The demand shift pattern at the yearly scale.
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be classified according to their consumption intensity, it is inter-
esting to examine the shift pattern sensitivity of different customer
groups according to the consumption intensity. This study will
divide the customers into several groups by percentile concerning
their annual consumption. For simplicity, the full set of sampled
data d is split into d0 and d

00
with respect to i-th percentile (see

Fig. 13). In the following, the 90-th percentile is used for parti-
tioning the data.

Fig. 14 shows the shift pattern of the two divided data sets,
corresponding to a high and a low consumption group, respectively.
The results indicate that the density maps of electricity demand
strength have a very similar shape for both data sets, only with a
subtle difference of density distribution. This makes it difficult to
distinguish and interpret them plausibly. However, the dynamics of
the densitymaps can be interpreted by the flow fields generated for
them (see the third sub-figure on the left). Although both flow
Fig. 13. The data sets partitione
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fields show a convergent trend to the central blank area, the flow
map with anomalies shows an obvious divergence center and a
convergence center on the map; while the flow map without
anomalies has several convergent regions of the demand shifts,
including a big cross-region shift and five small local shifts.

For further investigation, the quarterly shift patterns for the data
sets d, d0 and d

00
are shown in Figs. 11, 15 and 16, respectively. By

comparison, the number of local spatial shifts in Figs. 15 and 16
have little difference in scale, different from Fig. 11. However, the
number of local spatial shifts in Fig. 16 is closer to the spatial shifts
depicted in Fig. 11. After reviewing the data, it was found that the
customers with high consumption can easily dominate the trend of
spatial demand shifts. Therefore, the consumption variation over
time for high-consumption customers is not as obvious as for low-
consumption customers, but their consumption has a significant
impact on the results of the potential flow-based modeling
d according to percentile.



Fig. 14. The impact of consumption values on shift pattern.

Fig. 15. Quarterly demand shift pattern using the data set.d0

Fig. 16. Quarterly demand shift pattern using the data set.d
00
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algorithm. Perhaps by removing the data for high-consumption
customers, we get a general pattern of daily energy consumption.

5. Discussion

The above section evaluated the proposed visual analysis
framework and the PCP tool using a real-world case study from
Pudong District in Shanghai. Some interesting points remain to be
discussed. Although visual analysis or visual data mining has been
around for a decade, it is mainly used in physics, bioinformatics and
network security. The application to the energy sector is still in its
infancy, but it has great potential, especially for understanding
consumer behavior, fault diagnosis, interrelationships, etc.

First, this paper attempts visual analysis application in the en-
ergy domain and demonstrates its ability to detect typical energy
consumption patterns and analyze spatio-temporal shift patterns
of energy demand. Second, user interaction is the core of visual
analysis, and therefore a user-friendly interface becomes an indis-
pensable component for performing effective visual analysis. This
paper introduces the visual analysis tool, PCP, which allows users to
examine different patterns guided by their cognition and knowl-
edge. In this empirical study, five typical patterns were discovered
representing different consumption habits of customers behind.
Domain knowledge helps visual analysis, such as asking relevant
questions, performing useful analysis, and discovering meaningful
results through user interactions. Third, there is room for the
improvement of the proposed methods and the tool listed in future
work. Although this tool supports the exploration of different time-
granular data, as this study uses the daily resolution data, the study
can only demonstrate the capabilities of discovering patterns in
high resolution.

Ideally, pattern dynamics should be visualized by regular up-
dates when finer granular data are available, and real-time changes
can be detected. Last, the spatio-temporal shift pattern can be an
essential tool for utilities to balance energy supply between
different spatial locations. According to the sensitivity analysis
presented in section 4.4.3, it is necessary to identify different
customer groups according to their consumption intensity to cap-
ture local shift patterns better.

6. Conclusions and future work

Digitization of energy systems requires novel tools andmethods
that can help energy demand-side management. This paper pre-
sented a visual analysis framework supporting both spatial and
temporal pattern analysis using energy consumption data. The
paper first described the technique of dimensionality reduction, t-
SNE, and discussed how to reduce high dimensional data to a low
dimensional space and visualize them. The paper then presented
the process for discovering typical consumption patterns, making it
possible to recognize different customer groups with different
consumption behaviors or living habits. The paper proposed the
demand-shift pattern discovery method that supports the detec-
tion of demand changes according to spatial and temporal di-
mensions. To facilitate the use, the paper also implemented a web-
based tool to support interactive visual analysis by users. In the end,
the paper evaluated the proposed visual analysis framework and
the tool by a real-world case study of pattern discovery using the
electricity consumption data from Pudong district in Shanghai. The
empirical study successfully identified five typical consumption
patterns, and the demand-shift patterns across time and space. The
experimental results validated the plausibility of the proposed
method and its robustness.

There are several directions for future work. First, the frame-
work for spatio-temporal analysis of energy demand can be
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combined more seamlessly. The current system supports an
exploratory analysis of both temporal analysis and geospatial shifts
of demand, but the analysis is separate and the coupled information
has been inadvertently lost. It will be preferable to support the
analysis for a unified model of analysis of both spatial and temporal
dimensional information. Second, the computation of the geo-
spatial shift of power demand is essentially based on the strength of
local distribution changes, which mainly reflects partial dynamics,
whereas in practice there is not only local dynamics but also a
global trend. We seek to improve the flow generation algorithm
and to provide a more accurate geospatial shift of demand. Third,
we plan to apply our approach to analyze the data of more energy
types and to improve the approach accordingly.
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