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Abstract: More than 110 countries, including 500 cities worldwide, have set the goal of reaching
carbon neutrality. Heating contributes to most of the residential energy consumption and carbon
emissions. The green energy transition of fossil-based heating systems is needed to reach the emission
goals. However, heating systems vary in energy source, heating technology, equipment location,
and these complexities make it challenging for households to compare heating systems and make
decisions. Hence, a decision support tool that provides a generalized ranking of individual heating
alternatives is proposed for households as decision makers to identify the optimal choice. This
paper presents an analysis of 13 heating alternatives and 19 quantitative criteria in technological,
environmental, and financial aspects, combines ideal solution-based multi-criteria decision making
with 6 weighting methods and 4 normalization methods, and introduces ensemble learning with a
fuzzy membership function derived from Cauchy distribution to finalize the ultimate ranking. The
robustness of the proposed method is verified by three sensitive analyses from different aspects.
Air-to-water heat pump, solar heating and direct district heating are the top three rankings in the
final result under Danish national average data. A framework is designed to guide decision makers
to apply this ranking guideline with their practical, feasible situations.

Keywords: multi-criteria decision making; individual heating; fuzzy ensemble; energy transition

1. Introduction
1.1. Motivation

Climate change is currently considered one of the most significant global crises. Limit-
ing global warming to 1.5 ◦C requires rapid and deep transitions in energy, land, and urban
infrastructures, as well as industrial systems [1]. Governments are seriously taking this
into the agenda. More than 110 countries, including 500 cities worldwide, have set the goal
of reaching carbon neutrality [2]. In addition, 78% of European cities have greenhouse gas
(GHG) mitigation targets [3]. Challenges have been raised in the long-term planning and
decision making of the energy transition for municipalities in order to reach the emission
goals [4]. Especially in the Danish context of our research, the municipality has a key role in
the national transition to a fossil-free society because strategic energy planning in Denmark
is clearly defined as a responsibility of the municipalities.

Heating is a key part of the energy transition. Heating for buildings accounts for
nearly 25% of global energy end-use, in which fossil-fuel heating is responsible for 8% of
global CO2 emissions [5]. The Danish Climate Agreement for Energy and Industry 2020 [6]
emphasizes that oil and gas boilers must be phased out and replaced with green district
heating or electric heat pumps to achieve green heating. The agreement [7] allocates DKK
2.3 billion to support the replacements for the next 10 years, including subsidies for heat
pumps and free disconnection of gas networks. Hence, there is an increasing need for
decision supports to identify the optimal heating choice, especially the green transition
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path for those using natural gas and oil as heating sources, in order to achieve the climate
commitments of the local governments.

Heating systems differ in energy source, heat technology, equipment location, heat
carrier, transfer mechanism and heat requirement in the heated spaces [8,9]. Energy
sources are a major factor impacting the environment [10]; they are divided into fossil
fuels, including oil, gas and coal, and renewables, including biomass, solar, geothermal, air,
water, and waste [9]. Besides the traditional single energy source, research for combinations
of multiple energy sources has increased, such as hybrid source heat pumps [11] and
district heating [12]. Each category has developed heating technology, including fireplaces,
stoves, boilers, heaters, heat pumps, solar thermal collectors, and cogeneration. Heating
systems can also be classified as local, central and district heating systems by equipment
location [8]. Therefore, many different combinations can be made for a heating system;
the complexity would increase the difficulty of making an optimal decision, especially for
regular households.

Thus, how one can choose an optimal heating system becomes the next challenge.
There are mainly three general aspects that need to be considered when one makes a
heating choice: financial costs, technical considerations, and climate friendliness. Financial
costs cover the entire usage span, such as costs for purchasing equipment, installation,
maintenance and periodical consumption. Technical considerations usually include heating
efficiency, lifespan, difficulties compared with currently installed old technologies, and
other technical problems, such as noise level. Climate change calls more and more attention
to the environment not only by governments, but also by residents. A recent survey
conducted by Evida, which is a national natural gas supplier in Denmark, shows that over
44% of individuals in Denmark believe climate-friendly energy technology would be one
out of three most important features to be considered if they need to buy a new heating
technology, ranking in the third position among a total of 12 choices (the top two are both
financial costs related) [13]. However, considering too many indicators, especially those
that are sometimes contradictory regarding financial cost and climate friendliness, could
be a significant challenge. Hence, a decision support instrument, such as multi-criteria
decision making (MCDM), that is especially effective in facing such a circumstance [14]
becomes necessary.

1.2. Novelties

Many have used MCDM in evaluating and selecting optimal renewable and non-
renewable energy sources [15]. However, little of the scientific literature has focused
on household-level energy technology (only 14 studies assessed renewable energy tech-
nologies in households through MCDM within the last 30 years), although its significant
potential for decarbonization is acknowledged [16]. None of the studies has compared
more than seven technology alternatives, which is insufficient for individuals to make a
full comparison of all potential alternatives. Only one of them has focused on Denmark.

This research proposes a decision support tool that provides a generalized ranking
of individual heating alternatives for decision makers to identify the optimal choice. The
solution is based on an analysis of 13 heating alternatives and 19 quantitative criteria
in technological, environmental, and financial aspects. The resultant ranking from a
single MCDM could be easily altered [17]. Thus, an approach with more stable and
consistent results is proposed. It combines ideal solution–based MCDM with six weighting
methods and four normalization methods and introduces ensemble learning with a fuzzy
membership function derived from Cauchy distribution to finalize the ultimate ranking.
Here, ideal means the two selected evaluation methods are ideal solutions based on ranking,
and the decision makers aim for the ideal solutions. In reality, the ideal solution cannot be
reached, but an optimal solution close to the ideal one can be selected.

This study contributes both theoretically and practically. The theoretical contribution
lies in the proposed general framework to support objective decision making by optimiz-
ing the rankings from multiple ideal solution–based MCDMs through a fuzzy ensemble
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approach to achieve the optimal combination and decrease the variance in ranking results
from a single MCDM. The practical contribution lies in providing a full, detailed, yet gener-
alized ranking of heating alternatives. It could be used as a guide for both residences and
municipalities for the heating energy transition. Moreover, the proposed tool can be easily
and broadly applied to other fields that face similar problems with multiple alternatives
and criteria to be considered during decision making processes.

The analysis structure of this research is shown in Figure 1. The rest of the article is
organized as follows. Section 2 explains the conceptual framework of the methodology
and the detailed methods used. Section 3 present the results by applying the methods with
real data. Then, a discussion is presented in Section 4. Conclusions with limitations and
future works are given in Section 5.

Figure 1. Research structure.

2. Methods

Multi-criteria analysis is needed, considering sustainability’s multi-dimensional na-
ture, energy systems’ complexity [18], and variation of households’ situations. Thus,
numerous studies have applied MCDM methods in energy sectors regarding sustainability
analysis. Ref. [19] applied MCDM for the development of renewable energy systems on
islands. Ref. [20] introduced the framework of dividing the MCDM application method-
ological process into five steps. It starts from alternatives selection, criteria selection,
weighting and evaluation, followed by final treatment as the end, including sensitivity,
reliability analysis and Monte Carlo simulation. Ref. [21] showed that recent surveys are
focusing on MCDM for sustainability and renewable energy support.

Although there is much development of MCDM toward application in energy sectors,
certain limitations of this approach have been identified as well. Ref. [22] argued the
complexity of energy planning issues, regarding the presence of different approaches. The
different results of all approaches with uncertain final decision values showed a need for
appropriate quantitative techniques to deal with imprecise information and evaluate the
real effect of uncertainties on the final results, such as ranking the alternatives. Ref. [17]
argued that results from MCDM could be easily altered because of its alternative nature
in the underlying assumptions, such as criterion weights. Thus, groups of alternative
rankings are generated through distinct normalization, weighting, and ranking methods to
stabilize the final outcomes.

Ensemble learning is an interpretation for the wisdom of the crowd; the ensemble
methodology can be explained from the tendency of human nature to collect various opin-
ions and information and weigh and combine them in order to make a more complicated
and reasonable decision, where it is believed that the aggregation of a group of ideas is
better than choosing only one from all [23]. Ensemble learning is introduced to the ap-
proach to aggregate the numerous groups of primary rankings, eliminating the limitations
of MCDM mentioned above.
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The decision support methodology in this paper is shown in Figure 2 and tested in
the Danish heating energy transition problem. It starts with the selected alternatives and
criteria according to the defined problem. Then, the selected alternatives and criteria data,
as a format of matrix Mij, are normalized with methods of MinMax, Max, Vector, and
Enhanced [24], and weighted with methods of Mean, Standard deviation, Entropy, Angle,
Gini, and Criteria importance through inter-criteria (CRITIC) [25]. The generated objective
weights wj and normalized matrix Mij are calculated and combined with the evaluation
methods, where Vise Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) and
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) are used to
generate m ranking data sets Rm×i. Next, the final ranking Ri is aggregated by an ensemble
approach, using fuzzy membership function derived from Cauchy and logarithm function.

Figure 2. Decision support methodology.

2.1. Multi-Criteria Decision Making

MCDM has rapidly developed a large number of objective and subjective methods
in recent years. Technique for Order Preference by Similarity to an Ideal Solution (TOP-
SIS) has become one of the most popular approaches in the field of solving energy sector
issues due to its relatively rational logic [16]. It selects the alternative with the shortest
distance from the positive ideal solution and the longest distance from the negative ideal
solution [20]. Even though TOPSIS can completely use allocated information, it does not
contain the consideration toward correlations between attributes, and a strong deviation of
indicators in the ideal solution might influence the results significantly [26]. Vise Kriteri-
jumska Optimizacija Kompromisno Resenje (VIKOR) has the advantage of maximizing
“group utility” for the “majority” and minimizing individual regret for the “opponent” [27].
Through a proximity analysis of the ideal solution, VIKOR can develop a ranking with sev-
eral, usually conflicting alternative criteria [20]. However, VIKOR requires initial weights
and quantitative information to work with [26]. This paper focuses on these two ideal
solution–based methods with the combination of objective weighting and normalization.
With the combination of these methods, the approach can bypass some disadvantages of
both TOPSIS and VIKOR.

Table 1 shows the equations used for weighting and normalization methods with the
corresponding notations defined in Table 2. The normalization equation has separated
for a different target. For criteria that target maximization (max), the larger the value of
that criterion is, the better it is. For criteria that target minimization (min), the smaller the
criterion’s value is, the better it is.
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Table 1. Equations for weighting and normalization.

Weighting Method Equation

Mean wj =
1
n

Std wj =
σ(Mj)

∑J
j=1 σ(Mj)

Entropy dj = 1 + 1

ln

(
xij

∑
J
i=1 xij

) J
∑

j=1

(
xij

∑J
i=1 xij

ln( xij

∑J
i=1 xij

)

)
, wj =

dj

∑J
j=1 dj

CRITIC Cj =
I

∑
i=1

(1− rij)

√
∑I

i=1(xij− 1
n ∑n

i=1 xij)
n−1 , wj =

Cj

∑J
j=1 Cj

Angle uj = arccos
(

∑I
i=1 xij

‖Mi‖2‖Mj‖2

)
, wj =

uj

∑J
j=1 uj

Gini vi =
J

∑
j=1

|xij−Mj|
2n2 ∑I

i=1 xij
n

, wj =
vj

∑J
j=1 vj

Normalization Method Target: max Target: min

MinMax xij =
xij−min(Mi)

max(Mi)−min(Mi)
xij =

max(Mi)−xij

max(Mi)−min(Mi)

Max xij =
xij

max(Mi)
xij = 1− xij

max(Mi)

Vector xij =
xij

‖Mi‖2
xij = 1− xij

‖Mi‖2

Enhanced xij = 1− max(Mi)−xij

∑J
j=1 max(Mi)−xij

xij = 1− xij−min(Mi)

∑J
j=1 xij−min(Mi)

Table 2. Nomenclature.

Notation Definition

I Alternatives set
J Criteria set

wj jth criterion weight
Mi ith alternative’s score vector
Mj jth criterion’s score vector
xij ith alternative jth criterion score

σ(·) Standard deviation of a dataset
xij xij after normalization
n Criteria number
rij Correlation coefficient
Mi Mi after normalization
Mj Mj after normalization

With the weighting matrix and normalization matrix, TOPSIS calculates the distance
to the positive ideal solution and negative ideal solution by Equation (1) and measures the
ranking value by Equation (2) for each alternative in descending order. VIKOR calculates
the ranking values by Equations (3) and (4) and measures them by ascending order.

D+
i =

√√√√ m

∑
j=1

(
max

(
wj Mj

)
−Mij

)2 , D−i =

√√√√ m

∑
j=1

(
min

(
wj Mj

)
−Mij

)2 (1)

Ci =
D−i

D+
i + D−i

(2)

Si = ∑ wj

(
max

(
Mij
)
− xij

max
(

Mi
)
−min

(
Mj
)), Ri = max

{
wj

(
max

(
Mj
)
− xij

max
(

Mj
)
−min

(
Mj
))} (3)
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Qi = v
Si −min(S)

max(S)−min(S)
+ (1− v)

Ri −min(R)
max(R)−min(R)

(4)

2.2. Ensemble

An ensemble learning methodology originally from machine learning is adopted to
generate a stronger ranking by utilizing relatively weaker ranking sets from each MCDM.
Fuzzy membership distribution with Cauchy distribution is introduced [28].

By assuming (a) when ranking = 1 and membership = 0.9, (b) when ranking = 6, and
membership = 0.1, and (c) when ranking = 13 and membership = 0, f (x) can be calculated
through Cauchy distribution as shown in Equations (5) and (6).

f uzzy(x) =

{
1− [1 + a(x− b)−2]

−1
, 1 ≤ x ≤ 6

1− c ln x + d, 6 ≤ x ≤ 13
(5)

a =
225
64

, b =
3
8

, c =
1

10 ln 13
6

, d =
ln 13

10 ln 13
6
− 1 (6)

All the MCDM rankings are summarized to the final ranking through a fuzzy transi-
tion. Equation (7) shows the final ranking calculation, where rank(A,S) means A’s ranking
in set S, and sij means ith alternative and jth ranking.

R(i) = rank

(
j=J

∑
j

f uzzy
(
sij
)
,

i=I

∑
i

j=J

∑
j

f uzzy
(
sij
))

(7)

2.3. Pseudocode

The pseudocode of the proposed fuzzy ensemble MCDM is shown in Algorithm 1 to
present the steps in the programming processes. The methodology is tested by an empirical
heating ranking problem with real data in the next section.

Algorithm 1 Pseudocode for the proposed fuzzy ensemble MCDM approach

1: m← 0, r← a vector filled with 0
2: for each f ∈ F = {Mean, Entropy, Std, CRITIC, Angle, Gini}

3: do w(f )← f
(

Mij )

4: for each g ∈ G = {MinMax, Max, Vector, Enhanced}

5: do M(g)← g
(

Mij )

6: for each h ∈ H = {TOPSIS, VIKOR}
7: do V(f,g,h)← h(w(f ),M(g))
8: m++
9: R(m)← rank(V(f,g,h))
10: while m 6= 0
11: do Rf (m)← fuzzy(R(m))
12: m–
13: r = r + Rf (m)
14: Ri← rank(r)

3. Empirical Results

In this section, the proposed aggregated methodology is applied to the problem of
building energy transition at the household level. In order to support the decision making
process for each household, a comprehensive and objective ranking list of heating solution
alternatives is generated. The application is mainly divided into two steps. Firstly, a matrix
combining alternatives and criteria is processed through normalization, weighting, and
ranking methods to generate enough ranking list sets. Then, ensemble methods are applied
to a large number of primary ranking list sets in order to finalize the ultimate ranking.
Considering the stability problem of MCDM, sensitivity analyses are used.
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3.1. Alternatives

The heating alternatives are selected based on the principle of representative technolo-
gies and available mature products in the Danish market and international individuals
to support a generic comparison [29]. Both the possible currently installed heating tech-
nologies and available green heating technologies are listed, providing a clear comparison
for the decision makers. A total of 13 heating technology alternatives are investigated, as
shown in Table 3.

Table 3. Lists of 13 heating alternatives.

Heating Alternatives ID

Oil boiler H1
Gas boiler H2

Biomass boiler (auto) H3
Biomass boiler (manual) H4
District heating (indirect) H5
District heating (direct) H6

Heat pump (air to water) H7
Heat pump (air to water, low-price product) H8

Heat pump (ground source) H9
Heat pump (gas-hybrid) H10
Heat pump (air-to-air) H11

Woodstove H12
Solar heating H13

3.1.1. Boilers

The fuel types can categorize heating with boilers into oil boilers, gas boilers and
biomass boilers. Oil boilers often use domestic fuel oil, which is similar to diesel. Although
the technology is simple but reliable and highly efficient, the price of fuel oil is unpredictable
and volatile, so its cost could be potentially expensive. Gas boilers use the fuel of gas,
such as natural gas, biomethane, etc. Gas boilers have advantages of high efficiency,
low investment cost, and low gas fuel price while emitting fewer greenhouse gases and
pollution, compared with other fossil fuel boilers. The transport of gas fuels could be easy
and less costly than the transport of oil fuels, but it requires pre-construction of the gas
grid. Biomass boilers mainly have two types: automatic and manual stoking. For both
kinds of biomass boilers, the fuels are usually wood pellets. The manual biomass boilers
can also use other sizes of wood depending on their stoking room.

Biomass boilers with automatic stoking have a relatively high investment cost. How-
ever, if the transition is from oil boilers, the extra investment is quite low because it often
only requires changing a burner for biomass. Biomass boilers with manual stoking are a
simple and robust technology. The pellets fuel is exempted from tax, which provides com-
petitive costs regarding other alternatives with fossil fuels. However, automatic biomass
boilers usually require a large space, sometimes an extra boiler room. Manual biomass
boilers require effort in feeding and cleaning the boilers. Additionally, for both biomass
boilers, the storage of fuels also requires extra room.

3.1.2. District Heating

District heating is usually a system with pipes that distributes the thermal heat of hot
water to end-users for heating. It can be categorized into two types: direct and indirect
district heating. The difference is based on whether a substation is placed between the
central heat plants and end users.

For district heating as a whole, it is promoted by many regions, due to its numerous
advantages. Its low maintenance costs, low noise level, and no local pollution are due to its
separate central heat plants. Compared to other individual heating solutions, the central
heat plants of district heating can use various energy sources. It makes the usage of surplus
heat from industries and power production possible, and it can achieve economies of
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scale, which leads to the low cost of fuels and storage of fuels. Compared to direct district
heating, indirect district heating has a substation usually near the end users, requiring
extra equipment investment and electricity costs. However, district heating alternatives are
limited if the pre-construction of central heat plants and branch pipes are not complete.
Other disadvantages are mainly for energy suppliers and municipalities. There are costs
for maintenance and operation, considering the long transport of hot water and heat loss
during the transport in the network. Furthermore, the loss will increase with decreasing
population density in rural areas.

3.1.3. Heat Pumps

The heat pump is a system that draws heat from a heat source and transfers the heat
to the endpoints through a closed process. The working process is similar to refrigerators
but with reversed energy transfer direction. There are two major heat pump technologies:
compression-type heat pumps powered by electricity and absorption-type heat pumps
powered by thermal energy. Considering that the data used are collected from Denmark,
where absorption-type heat pumps are rarely used, the presented heat pumps are of the
compression type in this paper. Within electric compression heat pumps, technologies can
be categorized by their energy sources and transfer process as air-to-water, ground-source,
air-to-air, and gas-hybrid heat pumps.

The major advantage of heat pumps is that they can provide more heat than the
electricity they consume. Air-to-water heat pumps draw heat from ambient air and convert
the heat to endpoints by a water-based heat distribution system. Easy installation and low
noise level are advantages of air-to-water heat pumps. The normal model usually requires
large equipment investment, but the annual cost is significantly lower. Regarding this large
investment, there are cheaper models. However, the cheap models usually generate more
noise and last shorter lifespans. Ground-source heat pumps, also called brine-to-water heat
pumps, absorb heat from the ground and convert the heat to space heat or hot water. Due
to its underground heat collector, usually, there is no noise, and it is quite reliable during
its lifespan. However, it requires a large equipment investment and a large underground
area for installation. Air-to-air heat pumps draw heat from ambient air and convert it
through an air–heat distribution system. The equipment investment is relatively low, and
the installation is quite simple. However, it cannot supply heat to a large area, so it is
usually combined with other alternatives. A gas-hybrid heat pump usually refers to a
hybrid heating solution combining an electric heat pump and a condensing gas boiler.
The most common type of combination in Denmark is the combination of an air-to-water
heat pump and a gas boiler. The solution is offered because it can bypass some of the
disadvantages of gas boilers and electric heat pumps. It can significantly reduce emissions
due to the low share of heat generated by gas boilers. The gas boilers are mostly used when
the temperature difference between the heat source of the heat pumps and delivered heat
is large, which greatly decreases the heat pumps’ efficiency. Because both systems do not
need to function fully to supply the target heat, the lifespans of both systems are usually
longer than when functioning alone. The disadvantage is obvious that the maintenance
work is doubled, due to having two systems.

3.1.4. Woodstove

The woodstove is a traditional heater that contains an enclosed room to heat the space
nearby. Usually, firewood is the combustion source. Woodstoves can be independent of
electricity supply, but they require effort in manual operation. The price of wood fuel
varies very little, and some households might have access to wood at a low cost.

3.1.5. Solar Heating

Using solar energy is usually done through transferring heat liquid to heat water
and domestic spaces. Heat liquid is heated from the solar collectors covering the roof.
Solar energy is well known as an energy source with unlimited amounts and without any
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pollution. However, its disadvantages are obvious as well: there is a high installation cost
for its collectors and a mismatch between the heating demand and solar energy availability.

3.2. Criteria

Since the decision makers are households all over Denmark with different locations,
the currently installed heating technologies, financial situations, application of regulations
and personal preferences, and feasible heating sets considered by each decision maker vary
greatly. Specifically, whether a house is located in a current district heating or a future
district heating area decides its feasibility in choosing the district heating. The functioning
condition, remaining lifespan, and possibilities of currently installed heating combined with
additional heating also influence the choices of decision makers. The financial situation will
have strong influence in considering technologies with high investment. Some decision
makers could face regulations that constrain solar panels or other external units’ (e.g.,
heat pumps) installation, due to architectural concerns. Personal preferences, such as
enjoying the warmness of a woodstove, can also largely influence the choice of decision
makers. Therefore, the designed framework separates the above individual indicators
for the decision makers’ own subjective consideration and keeps the ideal solution–based
ensemble heating ranking objective. Hence, all criteria selected are quantitative indicators
regarding technical, environmental, and financial data. Since there are both full-year
heating and supplement-only heating alternatives, the expected share of the space heating
demand and hot tap water demand can be covered by each alternative. Table 4 summarizes
all selected criteria with their measurement, ID, data source and max or min ideal target.

Table 4. Criteria sets for heating alternatives assessment.

Dimension Criteria Measurement ID Target Source

Technical

Expected covered space heating demand share T1 max [29]
Expected covered hot tap water demand share T2 max [29]

Annual average heat efficiency net heat/fuel
consumption T3 max [29]

Technical economic lifespan years T4 max [29]
Time spends on manual maintenance hours/y T5 min [29]

Noise dB T6 min [29,30]

Environmental

SO2 emission g/GJ E1 min [29,31,32]
PM2.5 emission g/GJ E2 min [29,31,32]
NOx emission g/GJ E3 min [29,31,32]
CH4 emission g/GJ E4 min [29,31,32]
N2O emission g/GJ E5 min [29,31,32]
CO2 emission kg/GJ E6 min [31–33]

Financial

Nominal equipment investment k€ F1 min [29]
Nominal install investment k€ F2 min [29]

Nominal additional investment k€ F3 min [29]
Fixed electricity cost €/y F4 min [29]

Fixed operating and maintenance cost €/y F5 min [29]
Fuel cost €/GJ F6 min [31,34]
Subsidy k€ F7 max [35]

3.3. Empirical Data

The represented data for individual heating systems are considered and calculated
based on a typical single-family house with average characteristics, including 150 m2 area,
18 MWh annual heat demand, 8 kW peak demand, 4 kW hot water capacity and average
improvements for buildings built before 1979 [29]. This assumption also corresponds to
the Evida report [13], where over 75% of participants in Denmark reside in a residential
area between 100 and 200 m2.

The data are mainly collected from the Danish Energy Agency and its subsidiary. The
measurement unit is unified through a calculation based on 1 MWh = 1000 kWh = 3.6 GJ
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and EUR 1 = DKK 7.45. The emission of district heating and heat pumps is calculated
based on the used fuel distribution in district heating and electricity production and losses
in the transition. The noise is set by the influence level and average dB of the available
product. According to the Danish Executive Order, the fuel cost is a national average,
and the subsidy is for specific heat pumps. Alternatives and the criteria matrix with all
quantitative results are provided in Table 5.

Table 5. Alternatives and criteria matrix.

Criteria H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

T1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.3 0.1
T2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.7
T3 0.9 1.0 0.8 0.8 1.0 1.0 3.2 3.0 3.5 2.2 4.9 0.7 0.2
T4 20.0 20.0 20.0 20.0 25.0 25.0 16.0 12.0 20.0 18.0 12.0 20.0 25.0
T5 0.0 0.0 20.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0
T6 42.0 42.0 42.0 42.0 25.0 25.0 52.0 67.0 42.0 50.0 64.0 49.0 25.0
E1 6.7 0.4 25.0 25.0 0.7 0.7 9.3 9.8 8.5 11.0 6.1 25.0 0.0
E2 5.0 0.1 14.0 14.0 0.1 0.1 0.3 0.3 0.2 0.3 0.2 28.8 0.0
E3 52.0 20.4 70.0 70.0 4.7 4.7 18.9 19.8 17.2 24.0 12.3 90.0 0.0
E4 0.0 1.0 2.0 2.0 0.2 0.2 0.1 0.1 0.1 0.2 0.1 125.0 0.0
E5 0.0 1.0 4.0 4.0 0.5 0.5 6.3 6.7 5.8 7.5 4.1 4.0 0.0
E6 74.1 49.5 0.0 0.0 2.6 2.6 11.5 12.0 10.5 13.4 7.4 0.0 0.0
F1 4.3 2.7 3.8 4.5 1.3 1.0 6.9 4.6 7.1 6.7 1.2 2.1 2.9
F2 1.3 1.2 1.1 1.9 1.1 1.1 4.0 4.0 7.5 4.6 0.5 0.4 1.2
F3 0.0 2.0 6.0 0.0 3.0 3.0 0.0 0.0 0.0 2.0 0.0 1.6 0.0
F4 9.7 9.7 16.6 13.8 8.3 2.8 0.0 0.0 0.0 0.0 0.0 0.0 3.5
F5 174.9 181.9 357.6 420.3 37.8 46.0 311.4 359.7 287.3 375.8 150.3 145.0 49.0
F6 14.0 10.4 14.2 14.2 26.1 26.1 26.0 26.0 26.0 26.0 26.0 7.5 0.0
F7 0.0 0.0 0.0 0.0 0.0 0.0 3.5 2.8 4.3 0.0 0.0 0.0 0.0

3.4. Weighting and Normalization Matrices

Table 6 lists five weighting results from different weighting methods. Data highlighted
with darker background colour means higher weight. Most weights have a good balance
between different criteria with low deviation. However, a large variance can be noticed
in the Std weighting method, highlighting criterion F5, fixed operating and maintenance
cost with 44.4% weight. It will be evaluated by sensitive analysis. The results from four
normalization methods are shown in Tables A1–A4 of Appendix A.

3.5. MCDM Ranking Results and Analysis

The 48 MCDM rankings resulted from the combination of 6 weighting methods,
2 evaluation methods, and 4 normalization methods are listed in Table A5 of Appendix A.
The ranking results of TOPSIS have shown a larger variance, compared to VIKOR. As
shown in Figure 3, the normalization methods heavily influence the ranking results in the
same weighting method. However, a similar trend can be noticed in the same normalization
methods, using different weighting. The ranking generated by VIKOR apparently will
not change through different normalization methods and shares similarities when using
different weighting methods, as shown in Figure 4.
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Table 6. Weights results of 19 criteria from 5 different weighting methods.

Criteria Mean Std Entropy CRITIC Angle Gini
T1 0.0526 0.0011 0.0033 0.0542 0.0279 0.0188
T2 0.0526 0.0012 0.0804 0.0601 0.0307 0.0200
T3 0.0526 0.0046 0.0086 0.0520 0.0483 0.0447
T4 0.0526 0.0139 0.0007 0.0669 0.0154 0.0126
T5 0.0526 0.0679 0.0804 0.0538 0.0818 0.0911
T6 0.0526 0.0437 0.0014 0.0491 0.0212 0.0180
E1 0.0526 0.0308 0.0804 0.0511 0.0550 0.0551
E2 0.0526 0.0289 0.0804 0.0481 0.0776 0.0849
E3 0.0526 0.0955 0.0804 0.0467 0.0544 0.0536
E4 0.0526 0.1127 0.0804 0.0480 0.0943 0.1012
E5 0.0526 0.0089 0.0804 0.0496 0.0483 0.0478
E6 0.0526 0.0728 0.0804 0.0546 0.0730 0.0755
F1 0.0526 0.0070 0.0049 0.0493 0.0370 0.0345
F2 0.0526 0.0068 0.0103 0.0438 0.0530 0.0488
F3 0.0526 0.0060 0.0804 0.0533 0.0678 0.0728
F4 0.0526 0.0194 0.0804 0.0610 0.0633 0.0685
F5 0.0526 0.4441 0.0061 0.0451 0.0392 0.0371
F6 0.0526 0.0295 0.0804 0.0568 0.0322 0.0271
F7 0.0526 0.0052 0.0804 0.0566 0.0796 0.0882

Figure 3. Ranking changes comparison in TOPSIS.
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Figure 4. Ranking changes comparison in VIKOR.

Sensitive Analysis to v in VIKOR

As the final score calculation formula of VIKOR is shown in Equation (4), there is
a parameter v to weight the strategy of maximum group utility, which represents the
majority of the criteria [27]. Normally, v is set to 0.5 to represent the risk-neutral group,
which weighs the group utility and the individual regret equally. Hence, to generalize this
decision making, the value of v is changed to discover the influence of different preferences
existing in a large number of national and even international decision makers.

The sensitive analysis results are listed in Table 7. The change of background colour in
each column means ranking changes for this alternative under different sensitive scenarios
at the following results tables. The rankings of H3 to H9 are more easily influenced by
the change in v, where the ranking fluctuates in a certain range. However, the range of
absolute value change is still logically reasonable on a large scale.

3.6. Ensemble Results

With the proposed fuzzy Cauchy distribution membership function, the ensemble
ranking, shown in the first row of Table 8, is as follows: (1) heat pump (air to water),
(2) solar heating, (3) district heating (direct), (4) heat pump (ground source), (5) heat pump
(air to water, low-price product), (6) district heating (indirect), (7) heat pump (air-to-air),
(8) gas boiler, (9) oil boiler, (10) heat pump (gas-hybrid), (11) biomass boiler (manual),
(12) biomass boiler (auto), and (13) woodstove. In order to validate the robustness of the
ranking result, sensitive analysis of the possible influencing factors, which are the high
variance weight and fuzzy parameter setting, is needed.

3.6.1. Sensitive Analysis with or without High Variance Weight

Since the Std weighting method generated a high variance weight range from 0.001 to
0.444, a comparison experiment with and without Std weighting is conducted to evaluate
how a high variance weight can influence the final ranking result. As shown in Table 8,
six alternatives change one place, H11 and H12 exchange their rankings by changing
two places, and the rest stay the same. Therefore, the proposed method can handle high
weight variance.
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Table 7. Sensitive analysis results of changing parameter v in VIKOR.

v H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13
0.05 9 7 12 13 6 5 1 4 3 10 8 11 2
0.1 9 7 13 12 6 4 1 5 3 10 8 11 2

0.15 9 7 13 12 6 4 1 5 3 10 8 11 2
0.2 9 7 13 12 6 4 1 5 3 10 8 11 2

0.25 9 7 13 12 6 4 1 5 3 10 8 11 2
0.3 9 7 13 12 6 4 1 5 3 10 8 11 2

0.35 9 7 11 12 6 4 1 5 3 10 8 13 2
0.4 9 7 12 11 6 4 1 5 3 10 8 13 2

0.45 9 7 12 11 6 3 1 5 4 10 8 13 2
0.5 9 7 12 11 6 3 1 5 4 10 8 13 2

0.55 9 7 12 11 6 3 1 5 4 10 8 13 2
0.6 9 7 12 11 5 3 1 6 4 10 8 13 2

0.65 9 7 12 11 5 3 1 6 4 10 8 13 2
0.7 9 7 12 11 5 3 1 6 4 10 8 13 2

0.75 9 7 13 11 5 3 1 6 4 10 8 12 2
0.8 9 7 13 11 5 3 2 6 4 10 8 12 1

0.85 9 6 12 11 5 2 4 7 3 10 8 13 1
0.9 9 6 12 11 4 2 5 7 3 10 8 13 1

0.95 9 6 12 11 3 2 5 8 4 10 7 13 1
1 9 5 12 11 3 2 6 8 4 10 7 13 1

Table 8. Final ensemble ranking with or without the ranking results calculated by Std weighting.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13
With
std 9 8 12 11 6 3 1 5 4 10 7 13 2

Without
std 9 7 12 11 6 4 1 5 3 10 8 13 2

3.6.2. Sensitive Analysis to the Fuzzy Ensemble Method

The parameter of the original fuzzy Cauchy distribution membership function is set
based on the theory that decision makers prefer top-ranking alternatives more. How-
ever, the preference degree could change in a certain range, so the influence of different
membership values is tested below.

When ranking = 1, membership = y1, a = 25y1

(1−y1)

(
1−
√

9y1
1−y1

)2 , b =
6−
√

9y1
1−y1

1−
√

9y1
1−y1

, c = 1
10 ln 13

6
,

and d = ln 13
10 ln 13

6
− 1, then the following f (x) can be calculated by Equation (5) when y1 varies

from 0.6 to 0.999 as shown in Figure 5.
When ranking = 6, membership = y2, a = 25y2

(1−y2)

(
1−
√

y2
9(1−y2)

)2 , b = 6− 5

1−
√

y2
9(1−y2)

, and

c = y2
ln 13

6
, d = y2 ln 13

ln 13
6
− 1, then the following f (x) can be calculated by Equation (5) when y2

varies from 0.01 to 0.19 as shown in Figure 6.
When ranking = 13, membership = y3, a = 225

64 , b = 3
8 , c = 0.1−y3

ln 13
6

, and d = (0.1−y3) ln 6
ln 13

6
− 0.9,

then the following f (x) can be calculated by Equation (1) when y3 vary from 0 to 0.1 as
shown in Figure 7. The final ensemble ranking results in Table 9 show a rather consistent
ranking while facing different membership. It shows that the ranking starts to change
when y1 takes values of 0.8 and above and when y2 takes values of 0.13 and above. The
membership of y3 is relatively stable since the ranking changes only when it takes 0.1.
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Figure 5. The f (x) changes trend in different membership y1.

Figure 6. The f (x) changes trend in different membership y2.

Figure 7. The f (x) changes trend in different membership y3.
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Table 9. Fuzzy ensemble rankings under different membership.

Variables Value H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

Fuzzy_y1

0.6 9 7 12 11 5 3 1 6 4 10 8 13 2
0.7 9 7 12 11 5 3 1 6 4 10 8 13 2
0.8 9 8 12 11 5 3 1 6 4 10 7 13 2
0.9 9 8 12 11 6 3 1 5 4 10 7 13 2
0.99 9 8 12 11 6 3 1 5 4 10 7 13 2

0.999 9 8 12 11 6 3 1 5 4 10 7 13 2

Fuzzy_y2

0.01 9 8 12 11 6 3 1 5 4 10 7 13 2
0.04 9 8 12 11 6 3 1 5 4 10 7 13 2
0.07 9 8 12 11 6 3 1 5 4 10 7 13 2
0.1 9 8 12 11 6 3 1 5 4 10 7 13 2
0.13 9 8 12 11 5 3 1 6 4 10 7 13 2
0.16 9 7 12 11 5 3 1 6 4 10 8 13 2
0.19 9 7 12 11 5 3 1 6 4 10 8 13 2

Fuzzy_y3

0 9 8 12 11 6 3 1 5 4 10 7 13 2
0.02 9 8 12 11 6 3 1 5 4 10 7 13 2
0.04 9 8 12 11 6 3 1 5 4 10 7 13 2
0.06 9 8 12 11 6 3 1 5 4 10 7 13 2
0.08 9 8 12 11 6 3 1 5 4 10 7 13 2
0.1 13 8 12 11 6 3 1 5 4 10 7 9 2

4. Discussion

Based on previous analysis and comparison between VIKOR and TOPSIS meth-
ods [27,36], this paper introduced a framework that combines both methods with multiple
weighting and normalization methods to generate comprehensive rankings for heat alter-
natives decision support, followed by ensemble learning with fuzzy membership function
to generate a final ranking. Although the fuzzy theory is widely used with MCDM [37],
it is mainly used during the weighting and evaluating methods inside MCDM to handle
the fuzzy environment and subjective information. In this paper, the fuzzy member-
ship function was applied after the MCDM ranking. Additionally, the ensemble learning
methodology is widely used in machine learning, but it is rarely found in MCDM. The
proposed framework achieves an optimal combination for decision support of heating
alternatives. The ensemble learning with fuzzy membership function has shown great
robustness by effectively reducing the outcome variance while altering the value of each
criterion. Thus, customized changes in each criterion can provide a relatively stable and
accurate ranking for heat alternatives decision support.

4.1. Comparative Analysis

This framework has provided a full, detailed, yet generalized ranking of heating
alternatives. It contains 13 heating alternatives that are available in product markets.
Compared to the previous study [38], the comparison is based on more detailed alternatives
within the same kind of technology. For example, the biomass boiler is divided into auto
and manual categories. The variety ranking of different heat pumps in the final result also
proves the necessity of separating heating alternatives for individual households while
facing these detailed comparisons in real life. In addition, the inclusion of all alternatives
allows individuals to compare the currently installed heat technology with possible heat
alternatives, providing a clear vision of improvements or gaps.

In the meantime, while expanding the comparison list, the ranking result is relatively
consistent with previous research on Denmark, using single TOPSIS, which concludes that
solar heating is better than heat pumps as a whole and better than wood pellet (biomass)
boilers [38]. In the ranking calculated in this paper, solar heating does not rank in the first
position. The main influencing factors in the ranking of solar heating are its limitations in
annual energy transfer efficiency and new subsidy policy toward heat pumps [38]. Solar
heating and the other two types—air-to-air heat pumps and woodstoves—are only used
as supplemental heating alternatives, but their reasons are different. Woodstoves and
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air-to-air heat pumps are limited by their designs, which can only heat specific regions
regarding the entire living space. Solar heating is limited by its efficiency and storage
needs, considering that it heavily depends on the sunlight period length and the mismatch
between solar energy supply and heat demand. Thus, with more development in solar-
related technologies, the potential of solar heating is still significant.

The air-to-water heat pump, which ranks before solar heating, has a subsidy from the
Danish government for green heat transition, while solar heating does not. To measure the
influence of the subsidy, a scenario of a no-subsidy case is studied and examined by the same
process without the subsidy (F7). In this test, the three heat pumps with the subsidy fall to rank
as six to eight with the same relative order, where air-to-water > ground-source > low-price
air-to-water heat pumps; the new top five are solar heating, direct district heating, air-to-air heat
pump, gas boiler and indirect district heating.

4.2. Managerial Implications

The comparative analysis of the ranking without the subsidy shows a significant
influence of the subsidy toward ranking and provides insights to municipalities on how
the subsidy might influence households’ preferences based on the framework proposed
in this paper. This also acts as an example to those organizations considering promoting
certain technologies by subsidy.

In the context of heating transition decisions, the generated ranking could act as
a theoretical guideline for both municipalities and households. For municipalities, the
heat/energy planners can use this tool to develop heating plans and communicate to
building owners who need to make heating decisions. It can also be a tool for municipalities
to educate households to change to certain suitable solutions based on the quantified
method with objective ranking results, which is much more persuasive. For households,
Figure 8 shows an example of how this generalized framework derived from the proposed
method can apply in real life. According to the climate coordinator and energy planner
in the partner municipality in Denmark, households often need advice in changing their
heating system. Usually, households turn to local installers for opinions, but they might be
subjective and influenced by what they sell and are used to installing. Hence, the ranking
contains all available heating alternatives in the market and can act as a comprehensive
guideline to prevent potentially biased opinions. With this information, the decision
makers can easily choose optimal heating alternatives from the practical, feasible heating
sets influenced by personal and realistic factors. Apart from the final rankings, decision
makers can overview the intuitive quantified indicators of the summarized alternatives
and criteria matrix to match their personal preferences.

Figure 8. Generalized application framework.
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Real cases face the problems discussed above in Lyngby-Tårbæks, Denmark. The
households located in areas without district heating use gas or oil boilers for year-round
heating. Hence, there are around 8000 natural gas boilers and 800 oil boilers in year-round
homes that must be fossil-free by 2035 in the energy transition plan of Lyngby-Tårbæks.
If the households want to replace the old boilers, the air-to-water heat pump would be
the first suggestion. If the households do not want to invest too much initially, they could
obtain a heat pump by subscription, which will be owned and maintained by companies.
However, if they are sensitive to noise, they could consider a ground-source heat pump. If
the households are only looking for supplementary heating, solar heating could be their
first choice.

5. Conclusions

Nowadays, the energy transition toward carbon neutrality has become a growing
consensus among worldwide countries, and heating is a huge part of it. While facing the
challenge of self-salvation through carbon neutrality, this research contributes to helping
the heating energy transition in Denmark and globally. Denmark is one of the pioneer
cases within the EU. Many municipalities need this kind of decision support instrument
to better communicate with residents to achieve a smooth energy transition. Considering
multiple criteria regarding different households living in buildings with different current
heating systems and various physical factors, choosing a suitable solution from numerous
options for a specific household and a certain building becomes difficult. The goals of
residences, municipalities and researchers are the same regarding minimizing costs and
carbon emissions.

Hence, the contribution of this paper is to provide a framework to support the decision
making process with multiple alternatives and criteria to be considered. With the data
from Denmark, the methodology used in this paper is mainly based on VIKOR and TOPSIS
within MCDM. An ensemble learning method is applied to finalize the ultimate ranking.
The framework and methodology proposed in this paper could be easily and broadly
applied to other regions and fields to support the decision making process.

Another contribution is a comprehensive comparison of 13 individual heating alter-
natives available in Denmark through the proposed framework and the data from the
Danish Energy Agency. The comprehensive comparison could provide a full picture for
both Danish households and municipalities of each Danish region regarding the currently
and potentially available heating technologies’ advantages and disadvantages under the
same standard. The ranking results produced by the proposed framework provide a quan-
tified and objective perspective. For the households who face the situation of selecting
a heating technology, the suggestions provided by the energy suppliers usually include
their preference, which policies or their profits might influence. Thus, a full and objective
comparison may protect the decision makers from the influences of other parties. Later,
with a full understanding of each solution, decision makers’ choices with their preferences
can be made.

There are limitations of the proposed framework, and some possible future work can
be done. Considering the potential differences in policy, economic status, and usability
in each Danish region, it must be understood that in order to generalize the scope of the
ranking, the data used in the case of this paper are based on the Danish national average.
It might not be fully applicable to each specific situation. However, the methodology
and framework proposed in this research can be easily adopted with new data regarding
certain situations of each region, and more specific ranking results can be presented. The
influence of the result on decision makers has not yet been researched. Hence, further
work will focus on the interaction with decision makers and consider the whole framework
in Figure 8 in the modeling to generate tailored, optimal alternatives for one’s specific
needs. Based on this research, an intelligent decision support tool could be developed and
opened to the public with a user-friendly interface. Rather than using it as a guidebook to
compare currently installed technologies with possible heating alternatives, individuals
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could alter the value of each criterion based on their own situation so that the result would
be further customized.

In order to stabilize the ultimate ranking of each alternative, a large number of primary
ranking sets are generated by going through different normalization, weighting, and
MCDM methods. This paper applies only two classic, ideal-based MCDM methods,
TOPSIS and VIKOR, as the basic MCDM solution generators. However, there are many
variations, and other MCDM methods could be further involved to generate an even larger
number of primary ranking sets, which can be used to strengthen the stability of the final
ranking through ensemble learning methods.
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Appendix A

Table A1. MinMax normalized matrix.

Minmax H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7778 0.7778 1.0000
T2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.3000
T3 0.8511 0.8298 0.8723 0.8723 0.8298 0.8298 0.3617 0.4043 0.2979 0.5745 0.0000 0.8936 1.0000
T4 0.3846 0.3846 0.3846 0.3846 0.0000 0.0000 0.6923 1.0000 0.3846 0.5385 1.0000 0.3846 0.0000
T5 0.0000 0.0000 0.3333 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8333 0.0000
T6 0.4048 0.4048 0.4048 0.4048 0.0000 0.0000 0.6429 1.0000 0.4048 0.5952 0.9286 0.5714 0.0000
E1 0.2680 0.0160 1.0000 1.0000 0.0280 0.0280 0.3720 0.3920 0.3400 0.4400 0.2440 1.0000 0.0000
E2 0.1736 0.0035 0.4861 0.4861 0.0035 0.0035 0.0104 0.0104 0.0069 0.0104 0.0069 1.0000 0.0000
E3 0.5778 0.2267 0.7778 0.7778 0.0522 0.0522 0.2100 0.2200 0.1911 0.2667 0.1367 1.0000 0.0000
E4 0.0000 0.0080 0.0160 0.0160 0.0016 0.0016 0.0008 0.0008 0.0008 0.0016 0.0008 1.0000 0.0000
E5 0.0000 0.1333 0.5333 0.5333 0.0667 0.0667 0.8400 0.8933 0.7733 1.0000 0.5467 0.5333 0.0000
E6 1.0000 0.6680 0.0000 0.0000 0.0351 0.0351 0.1552 0.1619 0.1417 0.1808 0.0999 0.0000 0.0000
F1 0.5410 0.2787 0.4590 0.5738 0.0492 0.0000 0.9672 0.5902 1.0000 0.9344 0.0328 0.1803 0.3115
F2 0.1268 0.1127 0.0986 0.2113 0.0986 0.0986 0.5070 0.5070 1.0000 0.5915 0.0141 0.0000 0.1127
F3 0.0000 0.3333 1.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.3333 0.0000 0.2667 0.0000
F4 0.5843 0.5843 1.0000 0.8313 0.5000 0.1687 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2108
F5 0.3584 0.3767 0.8361 1.0000 0.0000 0.0214 0.7153 0.8416 0.6523 0.8837 0.2941 0.2803 0.0293
F6 0.5364 0.3985 0.5441 0.5441 1.0000 1.0000 0.9962 0.9962 0.9962 0.9962 0.9962 0.2874 0.0000
F7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1860 0.3488 0.0000 1.0000 1.0000 1.0000 1.0000
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Table A2. Max normalized matrix.

Max H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 0.7000 0.9000
T2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.3000
T3 0.8163 0.7959 0.8367 0.8367 0.7959 0.7959 0.3469 0.3878 0.2857 0.5510 0.0000 0.8571 0.9592
T4 0.2000 0.2000 0.2000 0.2000 0.0000 0.0000 0.3600 0.5200 0.2000 0.2800 0.5200 0.2000 0.0000
T5 0.0000 0.0000 0.3333 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8333 0.0000
T6 0.6269 0.6269 0.6269 0.6269 0.3731 0.3731 0.7761 1.0000 0.6269 0.7463 0.9552 0.7313 0.3731
E1 0.2680 0.0160 1.0000 1.0000 0.0280 0.0280 0.3720 0.3920 0.3400 0.4400 0.2440 1.0000 0.0000
E2 0.1736 0.0035 0.4861 0.4861 0.0035 0.0035 0.0104 0.0104 0.0069 0.0104 0.0069 1.0000 0.0000
E3 0.5778 0.2267 0.7778 0.7778 0.0522 0.0522 0.2100 0.2200 0.1911 0.2667 0.1367 1.0000 0.0000
E4 0.0000 0.0080 0.0160 0.0160 0.0016 0.0016 0.0008 0.0008 0.0008 0.0016 0.0008 1.0000 0.0000
E5 0.0000 0.1333 0.5333 0.5333 0.0667 0.0667 0.8400 0.8933 0.7733 1.0000 0.5467 0.5333 0.0000
E6 1.0000 0.6680 0.0000 0.0000 0.0351 0.0351 0.1552 0.1619 0.1417 0.1808 0.0999 0.0000 0.0000
F1 0.6056 0.3803 0.5352 0.6338 0.1831 0.1408 0.9718 0.6479 1.0000 0.9437 0.1690 0.2958 0.4085
F2 0.1733 0.1600 0.1467 0.2533 0.1467 0.1467 0.5333 0.5333 1.0000 0.6133 0.0667 0.0533 0.1600
F3 0.0000 0.3333 1.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.3333 0.0000 0.2667 0.0000
F4 0.5843 0.5843 1.0000 0.8313 0.5000 0.1687 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2108
F5 0.4161 0.4328 0.8508 1.0000 0.0899 0.1094 0.7409 0.8558 0.6836 0.8941 0.3576 0.3450 0.1166
F6 0.5364 0.3985 0.5441 0.5441 1.0000 1.0000 0.9962 0.9962 0.9962 0.9962 0.9962 0.2874 0.0000
F7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1860 0.3488 0.0000 1.0000 1.0000 1.0000 1.0000

Table A3. Vector normalized matrix.

Vector H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

T1 0.6867 0.6867 0.6867 0.6867 0.6867 0.6867 0.6867 0.6867 0.6867 0.6867 0.9060 0.9060 0.9687
T2 0.6912 0.6912 0.6912 0.6912 0.6912 0.6912 0.6912 0.6912 0.6912 0.6912 1.0000 1.0000 0.7839
T3 0.8892 0.8769 0.9015 0.9015 0.8769 0.8769 0.6060 0.6306 0.5690 0.7291 0.3967 0.9138 0.9754
T4 0.7211 0.7211 0.7211 0.7211 0.6514 0.6514 0.7769 0.8327 0.7211 0.7490 0.8327 0.7211 0.6514
T5 0.0000 0.0000 0.2481 0.7442 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6202 0.0000
T6 0.2561 0.2561 0.2561 0.2561 0.1525 0.1525 0.3171 0.4086 0.2561 0.3049 0.3903 0.2988 0.1525
E1 0.1387 0.0083 0.5175 0.5175 0.0145 0.0145 0.1925 0.2028 0.1759 0.2277 0.1263 0.5175 0.0000
E2 0.1416 0.0028 0.3965 0.3965 0.0028 0.0028 0.0085 0.0085 0.0057 0.0085 0.0057 0.8156 0.0000
E3 0.3441 0.1350 0.4632 0.4632 0.0311 0.0311 0.1251 0.1310 0.1138 0.1588 0.0814 0.5956 0.0000
E4 0.0000 0.0080 0.0160 0.0160 0.0016 0.0016 0.0008 0.0008 0.0008 0.0016 0.0008 0.9997 0.0000
E5 0.0000 0.0644 0.2578 0.2578 0.0322 0.0322 0.4060 0.4318 0.3738 0.4833 0.2642 0.2578 0.0000
E6 0.8002 0.5345 0.0000 0.0000 0.0281 0.0281 0.1242 0.1296 0.1134 0.1447 0.0799 0.0000 0.0000
F1 0.2767 0.1737 0.2445 0.2896 0.0837 0.0644 0.4440 0.2960 0.4569 0.4311 0.0772 0.1351 0.1866
F2 0.1179 0.1088 0.0997 0.1723 0.0997 0.0997 0.3627 0.3627 0.6801 0.4171 0.0453 0.0363 0.1088
F3 0.0000 0.2489 0.7467 0.0000 0.3734 0.3734 0.0000 0.0000 0.0000 0.2489 0.0000 0.1991 0.0000
F4 0.3558 0.3558 0.6089 0.5062 0.3045 0.1027 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1284
F5 0.1877 0.1953 0.3839 0.4512 0.0406 0.0494 0.3343 0.3861 0.3084 0.4034 0.1613 0.1556 0.0526
F6 0.1887 0.1402 0.1914 0.1914 0.3517 0.3517 0.3504 0.3504 0.3504 0.3504 0.3504 0.1011 0.0000
F7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4365 0.5492 0.3077 1.0000 1.0000 1.0000 1.0000
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Table A4. Enhanced normalized matrix.

Enhanced H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

T1 0.9043 0.9043 0.9043 0.9043 0.9043 0.9043 0.9043 0.9043 0.9043 0.9043 0.9787 0.9787 1.0000
T2 0.9065 0.9065 0.9065 0.9065 0.9065 0.9065 0.9065 0.9065 0.9065 0.9065 1.0000 1.0000 0.9346
T3 0.9660 0.9612 0.9709 0.9709 0.9612 0.9612 0.8544 0.8641 0.8398 0.9029 0.7718 0.9757 1.0000
T4 0.9175 0.9175 0.9175 0.9175 0.8660 0.8660 0.9588 1.0000 0.9175 0.9381 1.0000 0.9175 0.8660
T5 0.9077 0.9077 0.9385 1.0000 0.9077 0.9077 0.9077 0.9077 0.9077 0.9077 0.9077 0.9846 0.9077
T6 0.9178 0.9178 0.9178 0.9178 0.8618 0.8618 0.9507 1.0000 0.9178 0.9441 0.9901 0.9408 0.8618
E1 0.9070 0.8750 1.0000 1.0000 0.8765 0.8765 0.9202 0.9228 0.9162 0.9289 0.9040 1.0000 0.8730
E2 0.9235 0.9077 0.9524 0.9524 0.9077 0.9077 0.9084 0.9084 0.9080 0.9084 0.9080 1.0000 0.9074
E3 0.9504 0.9091 0.9739 0.9739 0.8886 0.8886 0.9072 0.9084 0.9050 0.9138 0.8986 1.0000 0.8825
E4 0.9163 0.9170 0.9177 0.9177 0.9165 0.9165 0.9164 0.9164 0.9164 0.9165 0.9164 1.0000 0.9163
E5 0.8588 0.8776 0.9341 0.9341 0.8682 0.8682 0.9774 0.9849 0.9680 1.0000 0.9360 0.9341 0.8588
E6 1.0000 0.9684 0.9050 0.9050 0.9083 0.9083 0.9197 0.9204 0.9184 0.9221 0.9145 0.9050 0.9050
F1 0.9352 0.8981 0.9236 0.9398 0.8657 0.8588 0.9954 0.9421 1.0000 0.9907 0.8634 0.8843 0.9028
F2 0.9083 0.9068 0.9053 0.9172 0.9053 0.9053 0.9482 0.9482 1.0000 0.9571 0.8964 0.8950 0.9068
F3 0.9007 0.9338 1.0000 0.9007 0.9503 0.9503 0.9007 0.9007 0.9007 0.9338 0.9007 0.9272 0.9007
F4 0.9544 0.9544 1.0000 0.9815 0.9452 0.9089 0.8904 0.8904 0.8904 0.8904 0.8904 0.8904 0.9135
F5 0.9044 0.9071 0.9756 1.0000 0.8510 0.8542 0.9576 0.9764 0.9482 0.9827 0.8948 0.8928 0.8554
F6 0.8750 0.8378 0.8771 0.8771 1.0000 1.0000 0.9990 0.9990 0.9990 0.9990 0.9990 0.8079 0.7304
F7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6698 0.7358 0.5943 1.0000 1.0000 1.0000 1.0000

Table A5. The 48 MCDM ranking results.

Weighting Evaluation Normalization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

Mean TOPSIS MinMax 7 4 12 11 3 1 6 9 5 10 8 13 2
Mean TOPSIS Max 9 4 12 11 3 2 5 7 6 10 8 13 1
Mean TOPSIS Vector 10 8 12 11 7 5 1 4 6 9 3 13 2
Mean TOPSIS Enhanced 9 4 11 12 2 1 3 5 6 7 10 13 8
Mean VIKOR MinMax 7 5 12 11 4 2 1 9 6 10 8 13 3
Mean VIKOR Max 7 5 12 11 4 2 1 9 6 10 8 13 3
Mean VIKOR Vector 7 5 12 11 4 2 1 9 6 10 8 13 3
Mean VIKOR Enhanced 7 5 12 11 4 2 1 9 6 10 8 13 3

Entropy TOPSIS MinMax 8 6 12 11 7 5 3 4 2 10 9 13 1
Entropy TOPSIS Max 8 6 12 11 7 5 3 4 2 10 9 13 1
Entropy TOPSIS Vector 10 9 12 11 7 5 2 3 1 8 6 13 4
Entropy TOPSIS Enhanced 10 8 11 12 6 5 3 4 2 7 9 13 1
Entropy VIKOR MinMax 9 7 12 11 6 5 2 3 1 10 8 13 4
Entropy VIKOR Max 9 7 12 11 6 5 2 3 1 10 8 13 4
Entropy VIKOR Vector 9 7 12 11 6 5 2 3 1 10 8 13 4
Entropy VIKOR Enhanced 9 7 12 11 6 5 2 3 1 10 8 13 4

Std TOPSIS MinMax 6 5 12 13 2 3 9 10 8 11 4 7 1
Std TOPSIS Max 6 5 12 13 2 3 9 10 8 11 4 7 1
Std TOPSIS Vector 6 5 12 13 3 2 8 10 7 11 4 9 1
Std TOPSIS Enhanced 6 5 11 12 3 2 8 9 7 10 4 13 1
Std VIKOR MinMax 6 5 12 13 2 3 9 10 8 11 4 7 1
Std VIKOR Max 6 5 12 13 2 3 9 10 8 11 4 7 1
Std VIKOR Vector 6 5 12 13 2 3 9 10 8 11 4 7 1
Std VIKOR Enhanced 6 5 12 13 2 3 9 10 8 11 4 7 1

CRITIC TOPSIS MinMax 7 4 12 11 3 1 6 8 5 9 10 13 2
CRITIC TOPSIS Max 8 6 12 11 3 2 5 7 4 10 9 13 1
CRITIC TOPSIS Vector 10 8 12 11 7 6 1 3 2 9 5 13 4
CRITIC TOPSIS Enhanced 9 7 10 12 2 1 3 5 4 6 11 13 8
CRITIC VIKOR MinMax 7 5 10 9 3 1 6 12 4 8 13 11 2
CRITIC VIKOR Max 7 5 10 9 3 1 6 12 4 8 13 11 2
CRITIC VIKOR Vector 7 5 10 9 3 1 6 12 4 8 13 11 2
CRITIC VIKOR Enhanced 7 5 10 9 3 1 6 12 4 8 13 11 2
Angle TOPSIS MinMax 10 8 12 11 7 5 1 3 2 9 6 13 4
Angle TOPSIS Max 10 8 12 11 7 6 1 3 2 9 5 13 4
Angle TOPSIS Vector 10 9 12 11 7 6 1 2 3 8 4 13 5
Angle TOPSIS Enhanced 10 9 11 12 5 1 2 4 7 8 6 13 3
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Table A5. Cont.

Weighting Evaluation Normalization H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

Angle VIKOR MinMax 9 8 11 12 6 5 1 2 3 10 7 13 4
Angle VIKOR Max 9 8 11 12 6 5 1 2 3 10 7 13 4
Angle VIKOR Vector 9 8 11 12 6 5 1 2 3 10 7 13 4
Angle VIKOR Enhanced 9 8 11 12 6 5 1 2 3 10 7 13 4
Gini TOPSIS MinMax 10 8 11 12 7 6 1 3 2 9 5 13 4
Gini TOPSIS Max 10 8 12 11 7 6 1 3 2 9 5 13 4
Gini TOPSIS Vector 10 9 11 12 7 6 1 3 2 8 4 13 5
Gini TOPSIS Enhanced 10 9 11 12 7 5 2 3 6 8 4 13 1
Gini VIKOR MinMax 9 8 11 12 6 5 1 2 3 10 7 13 4
Gini VIKOR Max 9 8 11 12 6 5 1 2 3 10 7 13 4
Gini VIKOR Vector 9 8 11 12 6 5 1 2 3 10 7 13 4
Gini VIKOR Enhanced 9 8 11 12 6 5 1 2 3 10 7 13 4
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