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A B S T R A C T   

Cutting energy consumption prediction gives decision supports for the energy-saving operation to realise green 
manufacturing. However, there are challenges when predicting aviation parts due to the machining features 
causing tool wear and expensive data labelling. Consequently, this paper builds a prediction model and em
phasises training with limited experimental data by proposing an ensemble transfer learning approach. The 
approach incorporates transfer learning, i.e., TrAdaBoost-R2 (TR) algorithm, and calibration, i.e., Bayesian and 
Markov chain Monte Carlo calibration (MCMC). Firstly, a cutting energy consumption prediction model 
considering tool wear is formulated with cutting and tool parameters as the inputs. Secondly, a dataset including 
experiment and simulation data for training is constructed, where TR is used to identify the valuable data from 
the simulation model calibrated by MCMC. Then random forest regression (RFR) is introduced as a base learner 
to train the prediction model on the hybrid dataset. Finally, a case study of the aluminium alloy 7075 parts 
milling process shows that the proposed method is accurate in cutting energy consumption prediction. Compared 
with RFR and TR-RFR, the proposed method’s coefficient of determination (R2) increases by 11.60% and 3.55%, 
indicating high goodness of fit under the same small samples of the experiment. Therefore, the proposed method 
could help determine the most efficient process plan without excessive time, materials and energy, significantly 
contributing to green manufacturing.   

1. Introduction 

Energy consumption prediction of parts manufacturing is a critical 
consideration to achieve green manufacturing. According to Ali et al. 
(2019), the machining energy consumption generated by the aero
nautical parts accounts for about 34% of the aerospace industry. Among 
them, cutting energy consumption accounts for around 60% of energy 
consumption in the machining process (Hu et al., 2017b). This reveals 
the energy-saving potential of cutting states for aero-parts. Therefore, to 
improve the machining energy efficiency of aviation parts, it is neces
sary to reduce the related cutting energy consumption (Gialos et al., 
2018). Considering this, cutting energy consumption prediction of 
aviation parts should be regarded as a crucial prerequisite. It can assist 
in assessing several process plan alternatives based on the impact of 
cutting energy consumption towards aviation green manufacturing (Lv 

et al., 2020). 
Aviation parts made of aluminium, titanium, and composite mate

rials have good properties, i.e., lightweight, high specific strength, and 
good corrosion resistance (Chen et al., 2021). Among them, aluminium 
alloy 7075 is famous for its easy forming of various shapes (Kaczyński 
et al., 2020). Nevertheless, the cutting energy consumption prediction 
for parts made of such material is difficult as the complex machining 
process involves many variables (Pereira et al., 2017). Other challenges 
are costly data acquisition and high energy consumption that is 
accompanied by tool wear due to the mechanical strength of the mate
rial (Luo et al., 2021). This has contributed to difficulties in accurately 
predicting cutting energy consumption and the inability to support 
sustainable optimisation in process planning. 

Aiming to work out such a prediction dilemma, explorations are 
performed in state-of-the-art literature related to cutting energy con
sumption of aero-part and other manufacturing fields. Among them, the 
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web of science is used as the search database for its broader coverage. 
The searching keywords and process are presented in Table 1, the 
related works are summarised in Table 2. 

The machining energy consumption of a machine tool can be divided 
into two types: cutting energy consumption and non-cutting energy 
consumption (Hu et al., 2017a). The cutting energy consumption in Hu 
et al. (2017b) denotes the energy exhausted from the net cutting states, 
which is related to process parameters. Wang et al. (2016) modelled the 
specific energy consumption of 7050-T7451 aluminium alloy in 
high-speed machining, considering tool rake angles and cutting speed. 
Bolar et al. (2018) presented a cutting force mathematical model of 
aviation aluminium alloy with cutting parameters, which proved high 
accuracy. Dahbi et al. (2017) studied prediction for characterising the 
cutting force and power considering cutting parameters and tool radius. 
These most focused on empirical modelling for cutting force or power 
and proved a strong correlation between cutting conditions and cutting 
force or energy. Still, these attempts did not go far enough to provide any 
technological means to deal with the expensive data-labelling and 
highly nonlinear prediction dilemma. 

Scholars have proposed many prediction methods in the parts 
machining made of common materials, laying the foundation for this 
problem. According to whether to rely on qualitative experience and 
model, there are two ways to realise the machining energy consumption 
prediction: formalised model-based or data-driven technology. The first 
type refers to the establishment of the formalised model using methods 
as Petri net (Wang et al., 2019), ontology-based modelling (Zhou et al., 
2017), cutting force modelling (Shi et al., 2019), specific-energy 
modelling (Deng et al., 2017) and energy consumption empirical 
modelling (Khan et al., 2020). However, such methods tend to show 
poor performance when the machine tools and operating conditions are 
uncertain, and the prediction problem is of high dimension. 

By contrast, many adopted data-driven methods to research with a 

better approximation ability for nonlinear prediction (Tong et al., 2021). 
At present, more widely used neural networks like artificial neural 
networks, i.e., ANNs (Arafat et al., 2020) and convolutional neural 
networks, i.e., CNNs (He et al., 2020), and machine learning, e.g., 
random forest regression (RFR), to solve regression problems (Li et al., 
2018). However, training ANNs require the estimation of values for 
numerous parameters that may affect the robustness of the model 
(Rodriguez-Galiano et al., 2015). For this reason, RFR is getting valued 
for its strong nonlinear mapping ability, good generalisation charac
teristics and few parameters. Therefore, it is preferred in this paper 
considering the complex machining features of aero parts. 

To sum up, those state-of-the-art works prove a strong relationship 
between cutting conditions and cutting energy consumption and provide 
theoretical and method references. However, it is far from enough to 
cope with the prediction problem of aero-parts machining with the 
existing methods well, and the gaps are summarised below:  

(1) Formalised models have been widely adopted in the literature to 
predict the energy consumption of the machining process. How
ever, the models will find their limited reliabilities when applied 
to aero parts prediction, as the model parameters are hard to be 
determined due to the high dimension of the machining. 

(2) By contrast, standard data-driven methods are preferred. How
ever, such methods, including the RFR algorithm, all exception
ally rely on sufficient historical data (Deng et al., 2021; Chen 
et al., 2020; Hong et al., 2020; Lin et al., 2020). Unfortunately, it 
tends to be unacceptable for aviation parts to perform costly and 
time-consuming data collection, limiting the application of green 
manufacturing in the aviation field. 

Motivated by insufficiencies, the transfer learning algorithm (Dai 
et al., 2007) is introduced. It is a promising approach to overcome the 
difficulties of the data-driven methods in training by using the knowl
edge gained in similar domains. However, if the data from a similar 
domain contains too much noise, the negative model transfer may exist 
(Niu et al., 2020). Therefore, an ensemble transfer learning method is 
proposed for predicting the cutting energy consumption of aviation 
parts. A novel transfer learning regression reduces the training experi
ment samples by the ensemble ideas of “transfer” and “calibration”. First 
of all, simulation and experiment are viewed as the source and target 
domains. Then, the “Transfer” uses TrAdaBoost-R2 (TR) (Lv et al., 2019) 
and takes a base learner, RFR algorithm, to facilitate the improvement 
for model training via transferring valuable simulation knowledge. As 
an instance-based transfer learning, TR permits the source domain with 

Nomenclature 

Ee, Ebasic, Eaircut, Ecut total, basic, air cutting and cutting energy 
consumption of one working step of machine tool 

Pbasic, Paircut, Pcut basic, air-cutting and cutting power 
tbasic, taircut, tcut time of the basic,air-cutting and cutting stages 
tra, tre, th, td rake, relief, helix angle and tool diameter 
cd, cw, fr, n cutting depth, cutting width, feed rate and spindle speed 
Tsrc, Ttar simulation and experiment datasets 
wi

t+1 the weights of Ttar and Tsrc 
Pt the trained model at tth iteration 
zt normalised constant 
β,βt weight coefficients of Ttar and Tsrc 
ϵi average loss of Pt on the Ttar 
ei

t loss function of the base learner on the Ttar at tth iteration 
ft predicted value of the learner 
A,B,C yield stress of the material, strain hardening constant and 

strain coefficient 

vf,vr,vs cutting speed, rotary speed of the cutting tool and sliding 
speed 

F, Fcut, FN resultant cutting force, basic cutting force and axial force 
θ, β instantaneous and maximum milling angles 
L working path length per tooth 
n cutter tooth number 
ɷ angular velocity 
Prc, Pac resultant and additional cutting power 
Ftw, Fzw frictional and tangential force 
vb* fixed length of elastic contact area 
vb tool wear that occurs on the flank surface 
σn normal pressure 
Ac, Bc constants in Usui’s model 
αx, αy, Δe coefficients to be calibrated 
Yi, Yi 

‘ actual and theoretical values of the ith samples 
Td, T0, Tmelt Tint deformation, room melting and interface 

temperature  

Table 1 
Summary of searching keywords and process used for this literature review.  

Literature search strings Search 
fields 

Limit to 

(“aviation parts” OR “aluminium alloy” OR 
“titanium alloy”) AND (“cutting energy 
consumption” OR “cutting force” OR “cutting 
power”) AND (prediction OR model) 

Subject Engineering, 
English 

(“cutting energy consumption” OR “machining 
energy consumption”) AND (model OR 
prediction) 

Subject Engineering, 
English  
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distributions different from the target. Meanwhile, the “Calibration” 
borrows the idea of Bayesian-Markov chain Monte Carlo (MCMC), a 
statistical inference method (Xu et al., 2018), to reduce uncertainties of 
the simulation that may cause possible data noise. 

Firstly, to realise the method, a cutting energy-consumption pre
diction model considering tool wear is formulated with cutting and tool 
parameters inputs. Then, the simulation model and experiment are used 
for data collection. Subsequently, the Bayesian-MCMC is applied to 
calibrate the simulation model. Then, the TR based on RFR uses limited 
experimental data and rich calibrated simulation data to train the pre
diction model. Compared with previous work, its main novelties 
include:  

• It proposes a data-driven prediction model of the cutting energy 
consumption for aviation parts considering the impacts of tool wear; 

• It attempts to overcome the costly and energy wastes in data label
ling by using transferring to leverage simulation data and focuses on 
avoiding negative transfer and data noise by utilising Bayesian- 
MCMC;  

• Good prediction accuracy and sensitive analysis provide instructions 
for the aviation industry to select the optimal energy-saving process 
plans. 

To the best of our knowledge, this method is firstly proposed for 
cutting energy prediction of aero-parts manufacturing, providing 
decision-supports of energy-saving process plans, thus improving the 
sustainability of aerospace manufacturing. The method performs well in 
a case study of aluminium alloy 7075 parts milling. 

The organisation of this paper is as follows: Section 2 presents a 
prediction model of cutting energy consumption. In Section 3, the pro
posed ensemble transfer learning method, including transfer, calibration 
and training mechanism, is elaborated. After obtaining the required 
data, the applicability and performance of the proposed method are 
verified in Section 4. Finally, Section 5 concludes this paper and offers 
future research directions. 

2. Overview of the proposed approach 

This section discusses the research problem and formulates a pre
diction model, providing a training basis for the proposed method. 

2.1. Problem description 

First of all, the focus is on the cutting stage of aero parts. Considering 
one specified part having different features and corresponding pro
cesses, cutting energy consumption Ecut is quantified from one working 
step in one process of one feature, shown in Fig. 1. 

From Fig. 1, the energy consumption of one working step is for
malised as expressed in Eq. (1). 

E = Ebasic + Eaircut + Ecut
= Pbasic⋅tbasic + Paircut⋅taircut + Pcut⋅tcut

(1)  

where Pbasic refers to the basic power, including start, standby, idle and 
other basic stages of the machine tool. Paircut refers to the air-cutting 
power of the machine tool, Pcut refers to the cutting power of 
machining parts, t refers to the time experienced by each stage. 

Table 2 
Summary of previous studies related to cutting energy consumption of aero-parts.  

References Type of quantification Tool wear 
impacts 

Prediction for aero- 
parts 

Demand 

Formalised type Data-driven type Yes No Yes No 

Wang et al. (2016) ✓   ✓ ✓  Empirical model of specific energy consumption 
Bolar et al. (2018) ✓   ✓ ✓  Empirical model of cutting power 
Dahbi et al. (2017)  ✓  ✓ ✓  Large amount of actual data and model parameters for cutting force 
Wang et al. (2019) ✓   ✓  ✓ Empirical model and knowledge rules of energy consumption 
Zhou et al. (2017) ✓   ✓  ✓ Carbon emissions-process bill of material of cutting tool 
Shi et al. (2019) ✓   ✓  ✓ Empirical model of cutting power 
Deng et al. (2017) ✓   ✓  ✓ Empirical model of cutting specific energy consumption 
Khan et al. (2020) ✓   ✓  ✓ Empirical model of cost and energy consumption 
Tian et al. (2019) ✓  ✓   ✓ Empirical model taking tool wear as inputs 
Arafat et al. (2020)  ✓  ✓  ✓ Large amount of actual data and model parameters 
He et al. (2020)  ✓  ✓  ✓ Large amount of actual data and model parameters 
Li et al. (2018)  ✓  ✓  ✓ Large amount of actual data but few model parameters 
This paper  ✓ ✓  ✓  Small amount of actual data and few model parameters  

Fig. 1. Quantification idea for cutting energy consumption.  
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According to Eq. (1), Ebasic and Eaircut can be acquired easily by uti
lising the data of Pbasic and Paircut from established databases for a specific 
machine tool. Conversely, there is almost no fixed model that can render 
itself supportive of calculating the Ecut directly. Considering the energy- 
saving optimisation potentials (Xu et al., 2020), the focus falls on the 
quantification of Ecut . Therefore, this research is dedicated to solving the 
quantification problem of net cutting energy consumption of aero parts. 
So, the prediction begins from material removal with the input of 
electricity and ends up with the completion of a working step feature. 

2.2. Model formulation 

The prediction model adopts an “Input/Output” mode. Based on 
previous work (Wang et al., 2016; Liu and Zong, 2019) and preliminary 
trial runs, taking milling process as an example, factors that influence 
cutting energy consumption and tool wear are selected as inputs, 
including tool parameters, i.e., rake angle tra, relief angle tre, tool 
diameter td and helix angle th, and cutting parameters, i.e., cutting depth 
cd, cutting width cw, feed rate fr and spindle speed n. Pcut is denoted as 
output that is finally transformed into Ecut based on Eq. (1). The model is 
expressed as: 

Objective : Ecut
Input : xtp(tra, tre, td, th), xcp(cd, cw, fr, n)
Output : Pcut
Subject to : xL ≤ xtp, xcp ≤ xU

(2)  

where xtp is denoted as tool parameters, xcp is denoted as cutting pa
rameters, xL and xu denote the lower and upper bounds. To solve the 
model, the training process is shown in Fig. 2. 

From Fig. 2, it is found that the learning method and data needed by 
the training model count for much. Although there are many ways to 
realise prediction, only a small amount of data is available for model 
training in actual experiments when sustainability and energy saving 
become the primary concerns. Thus, to achieve high accuracy without 
sacrificing the environment, an ensemble approach is proposed, and the 
main idea is elaborated in Section 3. 

3. Ensemble approaches for model training 

This study proposes an ensemble strategy of transfer learning, 
machining learning, and Bayesian calibration for cutting energy con
sumption prediction where aluminium alloy 7075 parts milling is 
studied. The basic idea is illustrated in Fig. 3. 

From Fig. 3, the idea mainly consists of two steps: (1) dataset con
struction; (2) learning algorithm for training the model. In step (1), a 
hybrid dataset is built containing data from simulation and experiments. 
To reduce the uncertainties of the simulation data, the Bayesian-MCMC 
calibration is used. After that, TR boosts a basic learner by reusing the 
calibrated simulation data that is most similar to the experiment data. In 
step (2), RFR is selected as the learner to model complex interactions 
among input variables. By calibration and transferring, the ensemble 
method could improve prediction accuracy and alleviate the costly data- 

acquisition problem. 

3.1. Dataset construction and transfer mechanism 

3.1.1. Transfer learning mechanism 
The costly data acquisition of aviation parts in the machining process 

impedes high accuracy prediction of the data-driven algorithms. To deal 
with such drawbacks, transfer learning is adopted. In detail, the idea 
behinds transfer learning is that it is easier to learn a new rule if a similar 
rule is obtained by using knowledge, thus improving the learning per
formance by avoiding expensive data-labelling efforts. TR is chosen as 
the transfer learning approach to add the simulation knowledge into the 
experiment in an adaptive-weighted updating way so that the simulation 
knowledge can be leveraged to the utmost (Xu and Meng, 2020). 

Suppose there is a hybrid training dataset T = Tsrc ∪ Ttar , where 
Tsrc={(xn

i , yn
i )} denotes the simulated dataset with the size of n and 

Ttar={(xm
j , ym

j )} denotes the experiment dataset with the size of m, both 
datasets are offered with weight distributions as Eq. (3): 

w1 =
(
w1

1,…,w1
n+m

)
,w1

i =
1

n + m
, i ∈ (1, n+m) (3) 

Define maximum iterations number as M, the model Pt is trained on 
the dataset T with a base learner at tth iteration, and the weights of Ttar 

and Tsrc are updated respectively as Eq. (4). 

wt+1
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt
iβ

|ft(xi)− yi |

zt
, i ∈ (1, n)

wt
iβ

− |ft(xi)− yi |

zt
, i ∈ (n + 1,⋯, n + m)

(4)  

where zt is a normalised constant to make sure the sum of wt+1
i is 1, β and 

βt are the weight coefficients of Ttar and Tsrc: 

β= 1
/(

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅

2In
(n

m

√ )

(5)  

βt =
εi

1 − εi
(6)  

where εi is the average loss of Pt on the Ttar as expressed in Eq. (7). 

εi =
∑n+m

i=n+1

wt
iet

i
∑n+m

i=n+1
wt

i

(7)  

where et
i is the loss function of the base learner on the Ttar at tth iteration: 

et
i =

⃒
⃒
⃒
⃒
⃒

(ft(xi) − yi)
2

D

⃒
⃒
⃒
⃒
⃒
, i ∈ (n+ 1, n+m) (8)  

D= max
i∈(n+1,n+m)

(ft(xi) − yi) (9)  

where ft is the predicted value of the learner. 

Fig. 2. The training process.  
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During transfer learning, the weights of source data with large errors 
are reduced in the next iteration to lower its impact on the prediction 
model. Instead, the target data receives more attention by increasing its 
weight. In such a way, the source data would be exploited effectively. 
The transfer learning mechanism is shown in Fig. 4. 

3.1.2. Simulation dataset construction with Bayesian-MCMC calibration 
Finite element analysis (FEA) is a physics-computational simulation 

for complex physical systems used in many fields because of its conve
nience and relatively good precision (Wimmer et al., 2019). FEA is 
carried out for the dataset construction to model the milling process of 
aluminium alloy 7075 parts. Moreover, Latin Hypercube Sampling 
(LHS) is adopted as it can approximately sample multivariate parame
ters (Wang et al., 2020a). 

A Johnson-Cook material model is used during FEA modelling as the 
workpiece material model represented by Eq. (10). 

σ = [A+B(ε)n
]⋅
[

1+CIn
(

ε⋅

εo
⋅

)]

⋅
[

1 −

(
T − To

Tmelt − To

)m]

(10)  

where A is the yield stress of the material; B is the strain hardening 
constant; C is the strain coefficient; n is the strain hardening effect; m is 
the thermal softening effect; Td is the deformation temperature; T0 is the 
room temperature; Tmelt is the melting point temperature of the material. 

Afterwards, the mechanical and physical properties of the material 
are shown in Table 3, and unknown parameters of the Jonson-Cook 

model are determined in Table 4. Finally, the milling process is 
expressed to simulate the cutting force to obtain the results. 

Owing to the inaccessibility of acquiring machining power directly 
from FEA, a basic transformation formula is used to obtain the result, 
expressed as Eq. (11). 

Pcut =
Wcut

t
= Fcut⋅v (11)  

where vf represents the cutting speed, and Fcut represents the cutting 

Fig. 3. The workflow of the proposed strategy.  

Fig. 4. The transfer learning mechanism of this study.  

Table 4 
Johnson-Cook plasticity material constants of aluminium alloy 7075.  

Parameters A (MPa) B (MPa) N C m 

Values 435.701 534.62 0.504 0.970 0.019  

Table 3 
Mechanical and physical properties for aluminum alloy 7075.  

Properties Conductivity 
(W/(m⋅K)) 

Expansion 
(10− 5) 

Elastic 
modulus 
(GPa) 

Hardness 
(HB) 

Density 
(g/cm3) 

Values 157 455 71 150 2.83  

F. Lu et al.                                                                                                                                                                                                                                        
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force. 
The cutting force mechanism of aluminium alloy 7075 plain milling 

is expressed in Fig. 5. 
From Fig. 5, β is the maximum milling angle, and: 

β= arc cos
(

td − cw

td

)

(12) 

Besides, L is the working path length per tooth and L = td⋅ β. n is the 
cutter tooth number. The work done is expressed as Eq. (13). 

Wrc =Frc⋅n⋅L (13)  

where Frc is the resultant cutting force. Taking the x axis as an example, 
the work done by the cutting tool per revolution is given below: 

Wx =Fx⋅sin
(

1
ωt

)

⋅n⋅td⋅arccos
(

td − cw

td

)

(14)  

where ω is the angular velocity. The basic cutting power consumed by 
the tool per step is given as: 

Pcut =
Wx

t
= Fx⋅sin

(
1
ωt

)

⋅n⋅td⋅arccos
(

td − cw

td

)

⋅
ω
2π (15)  

Fx and Fy are calculated as follows when the feed direction is along the x 
or y-axis. 

Fx =Frc⋅sin(ωt) + μ⋅FN (16)  

Fy =Frc⋅cos(ωt) (17)  

where FN is the axial force. Therefore, the resultant cutting power 
consumed per step is given as: 

Prc =Pcut + Pf (18)  

where Pf denotes the radial friction and is expressed as: 

Pf = μ⋅
(
Fx − Fy tan(ωt)

)
⋅vf (19) 

The cutting power considering tool wear is obtained as: 

Pcut
′

=Prc + Pac (20)  

where Pac denotes the additional cutting power due to tool wear in the 
flank, which is generated by the frictional force of radial extrusion Ftw 
and tangential force of material deformation Fzw. Pac is expressed as 
(Hou et al., 2014): 

Pac =Fac ⋅ v′

=

[
Ftw
Fzw

]

⋅[vf vr ] (21)  

dFtw = μ⋅[dFzw + dFz] (22)  

dFzw = σ⋅
[

vb −
2
3

vb*
]

(23)  

where vr is the rotary speed of the cutting tool, vb* is a fixed length of 
elastic contact area, vb is the flank tool wear obtained according to 
Usui’s model (Zhu and Zhang, 2019). 

vb=Ac⋅σn⋅vs⋅e
− Bc
Tint ⋅Δt (24)  

where σn is the normal pressure, vs is the sliding speed, Tint is the 
interface temperature, Ac and Bc are constants. 

Due to assumptions and simplifications, the FEA based power model 
in Eq. (20) may have many uncertainties leading to infeasible data for 
transfer learning. So, it is desirable to quantify the uncertainties as 
expressed by Eq. (25) and Eq. (26). 

Pcalib
rc = αx⋅

Fx⋅n⋅td⋅ω
2π ⋅sin

(
1
ωt

)

⋅arccos
(

td − cw

td

)

+μ⋅
(
αx⋅Fx − αy⋅Fy⋅tan(ωt)

)
⋅vf

(25)  

P → Pcalib = Pcalib
rc + Pac + Δe (26) 

From Eq. (25) and Eq. (26), the unknown coefficients include αx,αy,

Δe. Fz do not need to be calibrated as there is no work in the Z direction 
in plain milling. Meanwhile, the reason for Pac is that it is calibrated by 
adding coefficients Ac and Bc. Δe represents errors between observation 
and simulation. 

The calibration indeed borrows the principle of Bayesian parameter 
estimation (Moreland et al., 2020). Specifically, the Bayesian attempts 
to obtain the posterior distribution of αx,αy,Δe by expressing uncertain 
knowledge as probability statements, making predictions of inference 
uncertainty possible. The relationship between prior and posterior dis
tribution is given in Eq. (27). 

f (x|y)=
f (y|x)p(x)

f (y)
=

f (y|x)p(x)
∫

f (y|x)p(x)dx
∝f (y|x)p(x) (27)  

where p (x) and f (x|y) are the prior and posterior distribution of x, 
f (y|x) is the likelihood function. 

To get the solution of f (y|x) p (x), the MCMC algorithm is a neces
sary means (Nemeth and Fearnhead, 2021). It tries to get a stationary 
distribution by creating a stochastic process on long enough simulation 
runs. For a chain with Markov property, it has the relationship of 
p (xi=1|xi, xi− 1,⋯, x1) = p (xi+1|xi). When it converges to the stationary 
distribution, the posterior distribution of the unknown coefficients is 
determined. 

For sampling, the Gibbs algorithm is used for multi-parameter cali
bration. Here it is extended to three dimensions to solve the posterior 

Fig. 5. The cutting force mechanism in plain milling process.  

Table 5 
Gibbs sampling algorithm for this study  

Gibbs Sampling Algorithm 

Input the initial values of αx ,αy,Δe  
For iteration i ∈ (1, n)do 

Repeat 
αx(trail) = p((αx(i)

⃒
⃒αy(i),Δe(i))

αy(trail) = p((αy(i)
⃒
⃒αx(i),Δe(i))

Δe(trail) = p((Δe(i)
⃒
⃒αx(i),αy(i))

Until a target Markov chain length is reached 
End for 

Output αx,αy,Δe   
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probability densities of αx,αy,Δe. The details are listed in Table 5. 
In this paper, the normal distribution serves as the prior distribution 

of αx and αy, while the gamma distribution serves as the prior distri
bution of Δe, as expressed as Eq. (28) to Eq. (30). 

αx ∼ N(0, 1) (28)  

αy ∼ N(0, 1) (29)  

Δe ∼ Gamma(2, 1) (30) 

The likelihood function of αx, αy,Δe is defined as: 

p

(

Y

⃒
⃒
⃒
⃒
⃒
θ

)

=
1

(2πσ2)
N/2 exp

(

−
∑N

i=1

[(
Y ′

i − Yi
)2

2σ2

])

(31) 

The posterior probability density function is expressed as: 

p

(

θ

⃒
⃒
⃒
⃒
⃒
Y

)

=
p(θ)

(2πσ2)
N/2 exp

(

−
∑N

i=1

[(
Y ′

i − Yi
)2

2σ2

])

(32)  

where p (θ) is the prior distribution of αx,αy,Δe; Yi is the actual value of 
the ith observed sample, and Y′

i is the theoretical value of the ith 
observed sample. 

3.1.3. Experimental dataset construction 
Orthogonal experimental design (OED) (Wang et al., 2020b) is 

introduced for constructing the experiment dataset. The OED is based on 
the orthogonality to select some representative points to replace the 
comprehensive test to make the experiment more efficient. Given the 
inputs and outputs, an L32 (49) orthogonal array is formed that could 
accommodate four levels per feature, where recommendations, machine 
capacity and experience determine the value per level. 

3.2. Learning algorithm 

RFR algorithm is adopted as a base learner for TR to train the model. 
It is an ensemble-learning algorithm that combines a large set of 
regression trees. The prediction result is obtained by averaging the 
prediction results of all internal binary decision trees. Compared with 
other machine learning (e.g., support vector machine), RFR has fewer 
parameters to be tuned. Moreover, it has shown accuracy comparable 
with that of a deep learning algorithm, especially for a small sample size, 
as it is not sensitive to noise or over-fitting. Therefore, RFR is utilised as a 
base learner to study the nonlinear relationship between the inputs and 
outputs. The specific information on RFR is found in Li et al. (2020a). 

4. Case study 

In this section, the proposed approach is validated on python 3.6, 
and the processor is selected as Intel (R) Core (TM) i5-9400 CPU @ 2.90 
GHz and 8 GB RAM. 

4.1. Systematic methodology illustration 

The systematic methodologies adopted in the case study consist of 
(1) data acquisition and analysis, (2) model training and application, 
and (3) performance evaluation, as shown in Table 6. 

From Table 6, the methodologies adopted in each step are explained, 
and the details are presented in the next section. 

4.2. Data acquisition and analysis 

4.2.1. Data acquisition from simulation 
A plain milling simulation for aluminium alloy 7075 parts is con

ducted, where the tool path in one working step is a rectangle with a 
diameter of 204 × 37 mm, and the cutting tools are made up of tungsten 

steel. The milling simulation is carried out in ABAQUS 6.14, as shown in 
Fig. 6. After simulation, data extraction is performed. Based on the 
extraction range of input features in Table 7, samples are chosen by LHS 
with groups of 200. Partial results are listed in Table 8. Besides, the low- 
pass filter frequency adopted is 12,000, as the lower bound of n is 1500 
(r/min). 

Taking some features as examples, the three-dimensional distribu
tion of samples acquired from LHS are shown in Fig. 7. 

Fig. 7 clearly shows that LHS guarantees good space-filling and 
uniformity of sampling points along each dimension, ensuring data 
representativeness for the training process. 

4.2.2. Data acquisition from experiment 
An aero part made of aluminium alloy 7075 (chemical composition/ 

wt.%—Al:90.01 Zn:5.43 Si: 0.07 Fe: 0.28 Cu: 1.53 Mn: 0.04 Mg: 2.49 Cr: 
0.19 Zn: 5.1–6.1 Ti: 0.03) is selected. The machining process is con
ducted on Da Lian lathe VDL850A. Cutting power meter PW3360-30 and 
clamp current sensor 9660 are utilised for measuring cutting power 
generated per test. Sf1001 data analysis software is used for data anal
ysis. All cutting tests are performed under dry cutting conditions in the 
context of sustainable manufacturing practices. The experimental setup 
and data analysis are shown in Fig. 8. The tool path of the workpiece 
milling is shown in Fig. 9. 

To make the experimental data more accurate and reliable, per test is 
performed five times, so the power value is averaged. The details of 
levels are shown in Table 9. The experiment design and values with two 
decimal places are listed in Table 10. 

4.2.3. Feasibility evaluation of FEA model and calibration 
FEA makes sense if and only if the simulated result proves the good 

performance. Therefore, the FEA model should be validated to be the 
cornerstone of transfer learning. In this regard, 16 groups of experi
mental data are designed for feasibility evaluation and calibration of the 
FEA model, and the errors between FEA and experimental results are 
shown in Table 11. 

From Table 11, the relative errors are lower than 13%, while the 
maximum relative error appearing at the 6th experiment is 12.46%. 
Such errors may be attributed to the fact that it is hard to make accurate 

Table 6 
Systematic methodology explanations.  

Procedures Contents 

Step 1: Data collection and 
analysis  

• 32 and 16 groups of actual data collection by OED 
respectively and data analysis by Sf1001 software 
where power data is collected under the cutting 
states. The average value is taken as a measurement 
result per group and repeated each group five times. 
Combined with the average time read from the 
machine tool, the cutting energy consumption is 
obtained;  

• 200 groups of simulation data collection by the LHS 
method. After collection, a low-pass filter is used to 
filter the simulated signal. The filtering frequency of 
the low-pass filter is 8 × n, and n is spindle speed. 
Then, the polynomial fit is used to obtain the filtered 
signal curve, and the average value is taken from the 
wave peak. Finally, Bayesian-MCMC calibration is 
performed with 16 groups of actual data. 

Step 2: Model training and 
application  

• Model training by TR-RFR based on a calibrated 
dataset;  

• Prediction application analysis in cutting energy 
consumption of aero-parts. 

Step 3: Performance 
evaluation  

• Illustration of target dataset allocation;  
• Comparison analysis with TR-RFR and RFR using 

relative errors and other three indicators of root 
mean squared error (RMSE), coefficient of determi
nation (R2) and mean absolute error (MAE);  

• Sensitive analysis by Mean Decrease Gini and Mean 
Decrease accuracy;  
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object boundary conditions and material parameters. The uncertainties 
behind the FEA model remain to be recognised. Therefore, calibration is 
one necessary work to improve the accuracy of the FEA power model. 

As discussed in Section 3.1.2, the Bayesian-MCMC is used to 
acknowledge the unknown coefficients based on the experiment data, 
and the posterior results are probability distributions. To make the 
sampling more stable, the Gibbs method is calculated 1000 times. The 
iteration is drawn in Fig. 10, and the probability distributions of three 
unknown calibration coefficients are plotted in Fig. 11. For stability of 
results, the values of the first 200 iterations are eliminated. 

From Figs. 10 and 11, the results are derived from the median of the 
probability distributions, 0.8729, 1.4533, and 2.3751, with four decimal 

places, as adopted to calibrate Eq. (26). Thus, the cutting power results 
of the 200 groups are changed and used for training by TR-RFR in the 
next section. 

4.3. Model training and application 

4.3.1. Model training 
In this section, model training is exemplified. 32 groups of data in 

Table 10 are selected as target samples, while 200 groups of calibrated 
simulation data are viewed as source samples to enable the training 
process. Meanwhile, the k-fold cross-validation is adopted, which usu
ally guarantees the credibility of testing results and prevents model 

Fig. 6. FEA showing (a) workpiece setup, (b) tool setup, (c) simulation of the milling process and, (d) processed simulation curve of the cutting force taking Y-axis as 
an example. 

Table 7 
Sampling range of input features for FEA.  

Input feature cd (mm) cw (mm) n (r/min) fr (mm/r) th (◦) tra (◦) tre (◦) td (mm) 

Sampling range [0.5,2] [0.5,2] [1500,3000] [0.1,0.25] [20,50] [10,20] [10,18] [4,10]  

Table 8 
Simulation results.  

Exp.no cd (mm) cw (mm) n (r/min) fr (mm/r) th (◦) tra (◦) tre (◦) td (mm) Cutting power(w) 

1 1.55 0.98 1907 0.13 39 13 12 8 30.75 
2 1.37 0.77 2581 0.13 34 17 12 5 19.04 
3 1.02 1.30 1573 0.14 36 16 12 7 22.26 
… … … … … … … … … … 
61 0.61 1.20 2324 0.17 34 15 12 7 16.96 
62 1.51 1.40 2347 0.11 43 19 11 10 45.66 
63 1.27 1.50 2383 0.16 44 19 10 7 47.87 
… … … … … … … … … … 
198 1.32 0.70 2246 0.10 36 18 13 8 18.43 
199 0.65 1.30 1622 0.15 33 13 12 6 13.69 
200 1.46 2.0 1951 0.18 36 16 12 7 53.21  
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Fig. 7. Three-dimensional distribution of features.  
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overfitting, especially suitable to the small experiment samples. K is set 
as 4, meaning 3 folds of the target data are used for training, and 1-fold is 
left aside to support model testing. And testing is repeated 4 rounds. 
Furthermore, the number of trees is set as 300, the maximum depth of 
the trees is 50, the minimum number of samples at a leaf node is 5, and 
the minimum splitting feature is 3. 

4.3.2. Prediction application 
The cutting energy consumption prediction of the parts milling 

process is performed. As mentioned in Section 2.1, one important 
parameter needs to be predetermined, i.e., the time expensed in the 
cutting state: 

tcut =
L
vf

(33)  

vf = n⋅fr (34)  

where L is the cutting path, vf is cutting speed mm/min. As L is a square 
straight path in this study, the time is expressed as Eq. (35). 

tcut = 2⋅
(Lw + Ll − 2⋅cw + td)

vf
(35) 

Therefore, cutting energy consumption is listed in Table 12. Compare 
the results with the actual value of the time read from the machine and 
take an average of five times. Meanwhile, the average prediction time of 
32 experiments is 17.7 ms. 

From Table 12, it is found that the relative errors are basically lower 
than 10%, and the average errors of the four rounds are 3.99%, 6.24%, 
6.56% and 4.63%, respectively, proving the excellent performance of 
the proposed method. Although larger error fluctuation remains, such as 
3rd in round 2 with 9.86%, it does not mean infeasibility of the proposed 
methods, given that the real world is neither detailed nor accurate and 
operations like round-off are generally unavoidable. In conclusion, the 
results show that the proposed method reaches good accuracy in pre
dicting cutting energy consumption for aviation parts. The results also 
remind us of the importance of a good dataset supplement where model 
prediction accuracy is affected by an expensive data-labelling 
environment. 

Fig. 8. The environment setup of the milling process.  

Fig. 9. Workpiece size and tool path.  

Table 9 
Input features and their levels.  

Input 
feature 

cd 

(mm) 
cw 

(mm) 
n (r/ 
min) 

fr 
(mm/ 
r) 

th 

(◦) 
tra 

(◦) 
tre 
(◦) 

td 

(mm) 

Level 1 0.5 0.5 1500 0.1 30 12 10 4 
Level 2 1 1 2000 0.15 35 14 11 6 
Level 3 1.5 1.5 2500 0.2 40 16 12 8 
Level 4 2 2 3000 0.25 45 20 13 10  
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4.4. Performance evaluation and sensitive analysis 

4.4.1. Illustration of experiment dataset allocation 
In the previous section, 4-fold cross-validation is used to split the 

training and testing samples of the experiment target data (TD), where 
75% of TD involves training in each round. To illustrate the reasonable 
allocation, four studies are performed:  

(1) No_TD, meaning only source data (SD) is used to train the model. 
The TD only involves testing.  

(2) 1/4*TD, meaning 8 groups of experimental data with SD, are 
used to train the model. The left 24 groups are for testing.  

(3) 1/2*TD, representing 16 groups with SD involved in training.  
(4) 3/4*TD, representing 24 groups with SD involved in training. 

Table 10 
Experiment design and the values.  

Exp.no cd (mm) cw (mm) n (r/min) fr (mm/r) th (◦) tra (◦) tre (◦) td (mm) Cutting power(w) 

1 0.50 0.50 1500 0.10 30 12 11 4 12.45 
2 0.50 1.00 2000 0.15 35 14 12 6 14.52 
3 0.50 1.50 2500 0.20 40 16 13 8 25.66 
4 0.50 2.00 3000 0.25 45 20 14 10 44.21 
5 1.00 0.50 1500 0.15 35 16 13 10 15.37 
6 1.00 1.00 2000 0.10 30 20 14 8 20.65 
7 1.00 1.50 2500 0.25 45 12 11 6 48.51 
8 1.00 2.00 3000 0.20 40 14 12 4 47.47 
9 1.50 0.50 2000 0.20 45 12 12 8 27.30 
10 1.50 1.00 1500 0.25 40 14 11 10 51.71 
11 1.50 1.50 3000 0.10 35 16 14 4 43.97 
12 1.50 2.00 2500 0.15 30 20 13 6 63.32 
13 2.00 0.50 2000 0.25 40 16 14 6 36.18 
14 2.00 1.00 1500 0.20 45 20 13 4 49.06 
15 2.00 1.50 3000 0.15 30 12 12 10 88.56 
16 2.00 2.00 2500 0.10 35 14 11 8 71.13 
17 0.50 0.50 3000 0.10 45 14 13 6 18.39 
18 0.50 1.00 2500 0.15 40 12 14 4 39.21 
19 0.50 1.50 2000 0.20 35 20 11 10 25.81 
20 0.50 2.00 1500 0.25 30 16 12 8 29.39 
21 1.00 0.50 3000 0.15 40 20 11 8 19.00 
22 1.00 1.00 2500 0.10 45 16 12 10 24.97 
23 1.00 1.50 2000 0.25 30 14 13 4 36.93 
24 1.00 2.00 1500 0.20 35 12 14 6 41.71 
25 1.50 0.50 2500 0.20 30 14 14 10 33.27 
26 1.50 1.00 3000 0.25 35 12 13 8 63.38 
27 1.50 1.50 1500 0.10 40 20 12 6 31.39 
28 1.50 2.00 2000 0.15 45 16 11 4 47.76 
29 2.00 0.50 2500 0.25 35 20 12 4 76.84 
30 2.00 1.00 3000 0.20 30 16 11 6 63.12 
31 2.00 1.50 1500 0.15 45 14 14 8 73.77 
32 2.00 2.00 2000 0.10 40 12 13 10 70.92  

Table 11 
Samples for feasibility evaluation and calibration.  

Exp. no cd (mm) cw (mm) n (r/min) fr (mm/r) th (◦) tra (◦) tre (◦) td (mm) experiment Power(w) Simulation 
Power(w) 

|Relative Error| (%) 

1 1.00 1.00 2000 0.20 35 14 12 6 19.62 21.05 7.29 
2 1.50 1.00 2000 0.20 30 12 11 8 31.85 34.82 9.32 
3 2.00 1.50 3000 0.15 30 20 11 10 58.35 59.63 2.19 
4 0.50 1.00 3000 0.25 45 16 12 4 20.19 18.90 6.39 
5 1.00 0.50 2500 0.10 35 16 13 6 27.80 29.11 4.71 
6 2.00 2.00 3000 0.25 45 18 11 10 65.23 73.36 12.46 
7 2.00 0.50 2500 0.25 45 12 12 6 42.80 38.75 9.46 
8 1.00 2.00 3000 0.10 40 14 13 4 26.55 28.14 5.99 
9 0.50 0.50 2000 0.30 40 12 11 4 30.49 33.87 11.09 
10 1.00 1.00 3000 0.25 40 14 13 4 41.73 43.90 5.20 
11 0.50 1.00 1500 0.20 35 12 14 8 13.24 12.89 2.64 
12 2.00 2.00 3000 0.25 45 14 14 10 77.37 76.31 1.37 
13 1.50 1.50 2500 0.25 40 16 13 8 73.72 80.27 8.88 
14 2.00 0.50 1500 0.10 35 16 13 8 55.81 60.24 7.94 
15 1.50 2.00 1500 0.15 30 14 12 6 32.97 32.45 1.58 
16 0.50 2.00 3000 0.20 35 16 11 4 61.64 58.21 5.56  

Fig. 10. Iterative process of sampling.  
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Then, the testing average, maximum and minimum relative values of 
the predicted cutting power are presented in Fig. 12. 

From Fig. 12, it is found that with the increase of training numbers of 
TD, the proposed method is getting better according to the average, 
maximum and minimum relative errors and is slightly improved from 16 
to 24 groups, taking the average relative error as an example. When the 
numbers increase from 0 to 8 groups (in the case of ‘No_TD’ and ‘1/ 
4*TD’), the error drops from 13.90% to 10.03%. A similar observation is 
seen from the case of ‘1/4*TD’ to ‘1/2*TD’ with a reduction of 4.98%. 
However, when the numbers increase from 16 to 24 groups, the error 
decreases from 5.05% to 4.73%. This means that the proposed method is 
slightly improved (with a reduction of 0.32%) and indicates that the 
performance starts to converge when the experiment training numbers 
are around 16 to 24 groups. Thus, the experiment data allocation of this 
paper is reasonable. 

4.4.2. Performance evaluation 
In this section, the performance of the proposed method is examined. 

Two methods used for comparison are outlined below: 

Fig. 11. The probability distributions of three values.  

Table 12 
Prediction of cutting energy consumption compared with true values.  

Samples Predicted 
Result (J) 

True 
Result (J) 

Predicted 
Time (s) 

True 
Time 
(s) 

|Relative 
Error|% 

Round 
1 

1 3861.95 4051.79 97.20 97.14 4.69 
2 6040.31 6213.01 195.20 197.93 2.78 
4 1611.54 1774.93 39.52 40.15 9.21 
4 2108.89 2063.54 133.33 134.26 2.20 
5 2148.88 2183.92 59.04 60.36 1.60 
6 4754.32 4532.62 96.40 94.95 4.89 
7 8878.70 8496.30 117.60 119.45 4.50 
8 2212.66 2258.74 78.40 76.85 2.04 

Avg|Relative Error|% 3.99 

Round 
2 

1 2099.14 2084.11 58.08 56.43 0.72 
2 5577.27 5689.21 66.13 64.24 1.97 
3 2303.61 2555.48 39.52 40.32 9.86 
4 1913.33 2077.25 74.40 76.09 7.89 
5 1936.45 1868.08 74.40 72.38 3.66 
6 11202.49 10373.63 148.20 146.27 7.99 
1 4447.03 4870.00 97.20 99.27 8.69 
8 3909.96 4303.51 96.80 97.87 9.14 

Avg|Relative Error|% 6.24 

Round 
3 

1 1402.16 1510.21 59.04 58.85 7.15 
2 3303.11 3182.80 49.00 50.42 3.78 
3 1985.65 2000.44 60.00 60.13 0.74 
4 9316.48 9847.64 131.20 133.49 5.39 
5 4423.43 4208.96 79.68 81.41 5.10 
3 2971.19 2935.59 119.52 117.56 1.21 
7 2811.22 3034.86 148.20 146.97 7.37 
8 2353.90 2208.91 46.85 45.54 6.56 

Avg|Relative Error|% 4.66 

Round 
4 

1 1324.07 1240.97 66.13 65.31 6.70 
2 2229.71 2441.07 195.2 196.07 8.66 
3 1458.09 1384.90 98.00 95.38 5.29 
6 3851.04 3700.30 46.85 48.16 4.07 
5 3056.06 3009.27 77.76 76.75 1.55 
6 5066.75 4947.10 77.76 78.13 2.42 
7 1955.02 1851.01 98.40 100.65 5.62 
8 2244.88 2307.45 48.20 48.61 2.71 

Avg|Relative Error|% 4.63  

Fig. 12. Numbers of the experimental data used in model training.  
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● RFR: training the model without calibration and transfer operations 
to see if the two operations have values in prediction accuracy. 
Training and testing datasets are set as same as the proposed method 
without the 200 groups of simulation data. 

● TF-RFR: training the model without calibration to see if the opera
tion is effective. Training and testing datasets are set as same as the 
proposed method. 

The training and testing average errors of the above three methods 
are listed in Table 13. The fitting curves of the methods are shown in 
Fig. 13, taking testing results as examples. 

From Table 13, the testing relative errors of the three methods are 
close to the training errors with a reduction of no more than 2.39%, 
which verifies the good stability of the methods, indicating that almost 
no model over-fitting exists with a large difference between the training 
and testing results (Sarle, 1995). Meanwhile, taking the testing average 
relative errors as an example, the performance of TR-RFR and the pro
posed method are far better than RFR, showing that the feasibility of the 
data supplement from a reliable source domain. More than this, the 
proposed method with the lower average relative errors of 3.86%, 
5.38%, 4.75%, and 4.52% than TR-RFR with 7.72%, 8.64%, 7.39% and 
8.55%, suggesting that calibration of the source data is one way to 

Table 13 
Average relative errors of the three methods.  

Methods Round 1 Round 2 Round 3 Round 4 

Training Testing Training Testing Training Testing Training Testing 

RFR 8.99% 9.31% 13.26% 13.41% 13.08% 15.47% 10.87% 12.50% 
TR-RFR 6.04% 7.72% 6.81% 8.64% 5.80% 7.39% 7.46% 8.55% 
The proposed method 2.45% 3.86% 4.00% 5.38% 3.66% 4.75% 2.93% 4.52%  

Fig. 13. Fitting curves of the three methods.  

Table 14 
Comparison testing results of the three methods.  

Method Round 1 Round 2 Round 3 Round 4 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

RFR 5.097 4.042 0.888 9.979 7.767 0.766 6.386 5.850 0.878 8.114 5.833 0.873 
TR-RFR 3.707 3.040 0.940 5.558 4.615 0.927 3.770 3.156 0.957 3.693 4.833 0.955 
The proposed method 2.209 1.703 0.979 2.933 3.401 0.972 2.500 2.958 0.981 2.161 1.509 0.991  
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improve the prediction model’s reliability further. 
This conclusion is observed directly in Fig. 13. The proposed 

methods could fit the actual responses curve well, followed by TR-RFR 
and RFR algorithms. This happens because there are enough reliable 
data for training, so the proposed method studies the complex nonlinear 
relationship between the inputs and output well. 

To demonstrate the superiority of the method further, RMSE, R2 and 
MAE are introduced, and the comparison results are shown in Table 14. 
Among them, RMSE measures the residual variances between predicted 

and observed values, MAE reflects the average errors, whereas R2 re
flects the fitness of the regression line to observed values. Meanwhile, as 
R2 could describe the global goodness of fit of the prediction method 
without dimensions interference (Parhizkar et al., 2021), it is taken as an 
example. The worst and best R2 curves of the three methods are found in 
Fig. 14. 

Fig. 14. Error values of the three methods.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − yi
∧
)

n

√

(36)  

R2 = 1 −

∑n
i=1(yi − yi

∧
)

2

∑n
i=1(yi − ẏi)

2 (37)  

MAE =
1
n

∑n

i=1
|yi
∧
− yi| (38)  

where ŷi represents the predicted values, ẏi represents the mean of 
response variables, n represents the number of observations. The closer 
the values of RMSE and MAE are to 0, the better the quality is. 
Conversely, the closer of the R2 value is to 1, the better the performance 
is. 

From Table 14, the RMSE, R2 and MAE values of the proposed 
method outperform the other two algorithms, and RFR performs worst 
according to the indicators of the four groups. More than this, the three 
indicators of TR-RFR relative to that of RFR are improved by transfer 
learning operation, and the proposed method is better performed than 
TR-RFR thanks to calibration operation. In terms of the accuracy 
improvement, R2 is selected as a representative metric. Results show 
that the proposed method has the best R2 improved by 11.60% and 
3.55% relative to RFR and TR-RFR. It can be attributed to the fact: on the 
one hand, the valid knowledge of simulation is supplemented, 
improving the poor prediction capacity due to expensive experiment 
data extraction; on the other hand, the knowledge of the experiment 
offers the potentials to calibrate the FEA mechanism model. 

Similar conclusions are made in Fig. 14. Although apparent de
viations exist in the final point of the worst and best R2 curves, the 
overall performance is relatively remarkable, proving good consistency 
of the proposed prediction method. 

4.4.3. Sensitive analysis 
To reveal the contributions of the inputs to cutting energy con

sumption, sensitivity analysis is performed by built-in programs of RFR, 
i.e., Mean Decrease Gini and Mean Decrease accuracy, two effective 
ways to reveal important features (Li et al., 2020b). Among them, the 
importance of the latter is evaluated by average decrements of Mean 
Square Error. The results are normalised and transformed to importance 
weights with one decimal place by Eq. (39), as presented in Fig. 15. 

wi =
|gi|

∑8
i=1|gi|

(39)  

where gi denotes the importance of ith feature. The greater the gi, the 
greater the influence of the feature i on the prediction results. 

From Fig. 15, it is concluded that the factor mainly influences cutting 

energy consumption in the case is topped by rake angle (27.0% and 
28.1%), followed by feed rate, cutting width and spindle speed. It in
dicates that the cutting parameters and tool geometries should be judged 
jointly to get high accuracy of tool wear-related cutting energy. Mean
while, it gives the future optimisation focus. 

4.5. Discussion 

In this section, a triangulation methodology is adopted to illustrate 
the effectiveness of the proposed method. To begin with, taking R2 in 
Table 14 as an example, a comparative analysis with other existing 
works, i.e., the data-driven methods (e.g., RFR) and the transfer learning 
methods (e.g., TR-RFR), is performed, then each result is drawn. After 
that, the contributions of the proposed method related to the results are 
highlighted. 

The proposed method is first compared with RFR, a widely used 
method in parts cutting energy or force prediction (Charalampous, 
2021). From Table 14, the worst (0.972) and best R2 values (0.991) of 
the proposed method are better than RFR (0.762 and 0.888), showing 
that the former could capture complex correlations more effectively 
than the latter with the same small experiment samples. It also indicates 
that the traditional data-driven methods exceptionally rely on actual 
rich samples. This observation is confirmed by the related literature that 
uses such methods. For example, in the study of Azmi (2015) that uses 
the adaptive neural fuzzy inference system and the study of Xu et al. 
(2020) that uses ANN, large amounts of actual data are in great need (e. 
g., 231 and 186 experiment datasets are used in the two works). Obvi
ously, those methods challenge their applications in the aero-machining 
sector that are featured by expensive data collection. Unlike the existing 
data-driven methods, by utilising a transferring operation, the proposed 
method makes the prediction for aviation parts feasible, avoiding the 
costly collection of experiment data. 

Compared with TR-RFR (with the worst value 0.927 and best value 
0.957), the proposed method also performs better. The superiority over 
the traditional transfer learning method lies in its ability in reducing the 
negative transfer impacts from a similar source on the prediction accu
racy by adopting the Bayesian-MCMC calibration. In addition to the TR- 
RFR, another advanced method used in the existing literature is an ANN- 
based transfer learning in Wang et al. (2021), where a model concerning 
cutting force was trained by a transfer network with simulation and 
experimental data. However, the model’s performance still relies on 
large amounts of experiment data (300 groups). More than this, the 
author neglects the uncertainties of simulation that may have negative 
transfer effects, thus limiting the accuracy. By contrast, a conclusion is 
demonstrated that the proposed method with the calibration is the first 
one that allows predicting with small amounts of actual data and offers 
the simulation more feasible in real applications. 

Fig. 15. Importance weight of each feature.  
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Based on the above comparative analysis, it is shown that the pro
posed method can obtain better performance by solving the drawbacks 
of the methods in the existing literature, namely its main contributions 
include: 1) First, unlike the existing data-driven methods, it breaks the 
limitations of the costly experimental data-labelling through trans
ferring valid knowledge from a similar source domain; 2) Second, unlike 
the existing transfer learning methods, it considers the negative transfer 
impacts by using the Bayesian-MCMC calibration to mitigate the un
certainties of the source domain. The ensemble approach holds for any 
mechanical machining process of parts, provided that the process can be 
simulated to obtain data. And it is more suitable for the aviation scenario 
featured by the costly data-labelling. With the desirable accuracy of the 
proposed method, managers can use energy-saving optimisation to 
determine the most efficient process plans without numerous experi
mental trials, avoiding wastes of time, materials, energy, and work
forces, which significantly contributes to green manufacturing. As a 
result, it benefits the industry and society. 

5. Conclusions 

This paper proposes an ensemble transfer learning approach for aero 
parts cutting energy consumption prediction, suitable for the non- 
sustainable expensive-data acquisition and tool wear-existence envi
ronment. The main theoretical contributions are summarised as follows. 

Firstly, given the machining feature of aero-parts, a data-driven 
training model is formulated where parameters of cutting and tool 
conditions affecting tool wear are selected as inputs to make the pre
diction practical. 

Secondly, two main operations are performed orderly, aiming at the 
problems of limited data available and the high cost of acquiring test 
data. One is the Bayesian-MCMC calibration for describing the uncer
tainty of the FEA model to reduce the noise of supplemented data. The 
other is the TR-RFR for identifying and transferring useful calibrated 
FEA data to supplement training data. 

Finally, the case study has shown that the proposed method performs 
well in cutting energy consumption prediction with small amounts of 
actual data. Compared with RFR and TR-RFR, the accuracy is improved 
by adding transfer learning and calibration operation. Taking R2 as an 
example, the best value of the proposed method is increased by 11.60% 
and 3.55% with the above operations, illustrating the effectiveness. 

The main practical implications are as follow. First, its powerful 
approximation ability in the actual case without repeatedly experiments 
via a sustainable and reliable way to obtain data and adaptability to 
different inputs values makes it convenient for the industry to evaluate 
the cutting energy consumption degree under various process plans. 
Second, its decisive role in revealing sensitive parameters and helping to 
formulate energy-saving process settings, beneficial for society, industry 
and government managers to promote sustainable schemes for aero
space manufacturing. 

Potential limitations and related future studies of the paper are as 
follows. Firstly, the element birth and death method can be used to 
speed up the simulation process in future studies. Secondly, the pro
posed method has not yet been applied to complex aero-part like im
pellers, which will be investigated in the future to fit the prediction 
model in reality. Finally, cutting energy will be minimised in the future 
through cutting parameters and tool geometries optimisation according 
to sensitive analysis results to explore the energy conservation potential 
of the actual industry. 
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