

Barriers to flexibility

Sneum, Daniel Møller; Bergaentzlé, Claire

Publication date: 2021

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Sneum, D. M., & Bergaentzlé, C. (2021). *Barriers to flexibility*. Technical University of Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Barriers to flexibility What hinders flexibility in the interface between decentralised energy and the electricity system?

DTU

Investment

Permitting

Ownership

Technology conditions

Grid access

Physical environment

Barriers to flexibility What hinders flexibility in the interface between decentralised energy and the electricity system?

Policy brief 2021

By:	Daniel Møller Sneum & Claire Bergaentzlé
Copyright:	Reproduction of this publication in whole or in part must include the customary bibliographic citation, including author attribution, report title, etc.
Cover photo:	Large-scale heat pump by Jesper Voldgaard
Funding:	This work was carried out in the FlexSUS project which has received funding in the framework of the joint programming initiative ERA-Net Smart Energy Systems, with support from the European Union's Horizon 2020 research and innovation programme under grant agreement No 775970.
Published by:	The <u>FlexSUS project</u> and DTU, Department of Management, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark

Sector coupling, smart energy and integrated energy systems all assume one thing:

INTEGRATION BETWEEN ENERGY SECTORS MUST BE FLEXIBLE

But what if it isn't?

Through review of 109 pieces of literature, The FlexSUS Project brings you a comprehensive overview of barriers to flexibility in the interface between decentralised energy and the electricity system.

THIS BRIEF

- **defines flexible sector coupling** in the interface between district heating/cooling and the electricity system
- provides a taxonomy a useful checklist for policymakers driving increased flexibility in integrated energy systems
- **indicates areas of priority** for technologies, decision-levels and project life cycles when addressing barriers.

The findings are based on the scientific article <u>Barriers to flexibility in the district</u> <u>energy-electricity system interface - A</u> <u>taxonomy</u>.

While district energy (district heating and cooling) is the case in point, most of the findings apply for all decentralised energy systems/sector coupling/ integrated- and smart energy systems.

WHAT IS FLEXIBILITY?

FLEXIBILITY = RESPONDING TO SIGNALS

e.g. electricity prices or emissions. The response can be to adjust production or consumption of energy vectors like electricity and heat.

CHP - Combined heat and power/cogeneration plant

NEITG - Non-electricity interfaced thermal generator (typically a boiler for heating or a chiller for cooling) PTH/C - Power to heat/cold

CATEGORIES AND CHARACTERISTICS OF BARRIERS

Barriers <u>fit within</u> categories and <u>have</u> characteristics. Example on next page.

Interactive version bit.ly/FlexibleDistrictEnergy

EXAMPLE

Absence of signal providing scheme is a Barrier that fits within the Category Operational signalling, has the Characteristics of affecting Technologies Power to heating/cooling and Cogeneration, Originating from International, National and Regional levels and impacting Life cycle phase Operation.

LEGEND

The checklist of barriers and solutions begins on the next page. These icons and abbreviations are used to describe barrier characteristics.

Investment Permitting

ng Ownership

Technology Grid access

1-

Physical conditions

Bounded rationality

OPERATIONAL SIGNALLING #1	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
Absence of signal- providing scheme	Responding to signals requires the existence of a signal-providing scheme.	Establishment of a signal- providing scheme - e.g. electricity market or environmental footprint.			
Electricity market: Absence of flexibility-need	Price volatility in electricity markets is necessary to incentivise a shift in operation among technologies.	Price-reflective signals with higher granularity geographically or temporally (e.g. bids based on minutes instead of hours).			
Electricity market: Fixed electricity prices	Fixed electricity prices remove the ability to respond to real-time signals.	Introducing signals by shifting (part of) the fixed price to become variable	i		
Physical vs. financial dispatch: Must-run operation	Must-run operation reduces flexibility. Dispatch according to e.g. physical contracts or heat demand disregards flexibility needs.	Advanced control strategies that take into account both heat demand and other signals			
Operational taxes on flexible district energy	Taxes on the use of flexible district energy technologies reduce their competitiveness	Adjusting taxation to a point where the desired technologies are competitive			

Investment Permitting

ig Ownership

Technology Grid access

1~

Physical conditions

Bounded rationality

OPERATIONAL SIGNALLING #2	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
Favourable operational taxes on NEITG	If NEITG supplies cheaper heating, it will be dispatched. This is problematic if flexible technologies are uncompetitive.	Levelling taxes for electricity and biomass for heating			
Inflexible operational subsidies for flexible district energy	Operational subsidies can distort signals by dampening them or removing them entirely.	Signal-enabling subsidies such as feed-in-premiums or capacity payments.			
Operational subsidies for NEITG	Such subsidies decrease the relative competitiveness of flexible district energy technologies.	Adjust or remove subsidy, according to societal priority.			
Electricity grid tariffs	Like taxes, electricity grid tariffs can make PTH/C less competitive.	Time-of-use tariffs as a least-worst option. Ideally dynamic tariffs.			
Barriers for entry into signal-providing schemes	Discriminatory entry requirements can impact technologies otherwise capable of offering flexibility and services.	Reduce transaction costs of market access.			
Barriers for operation in signal- providing schemes	If potential for flexibility is under-utilised with an inadequate market design. E.g. if the market insufficiently values flexibility.	Fair remuneration for all assets that can provide flexibility.			

Operational Inve signalling

Investment Permitting

g Ownership [·]

Technology Grid access

Physical conditions

Bounded rationality

	INVESTMENT	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
	Investment subsidies for NEITG	Such subsidies would decrease the relative competitiveness of flexible technologies.	Adjust or remove subsidy, according to societal priority.			
	Limitations in capital for flexible district energy	Large upfront investment costs are common in district energy projects, making access to capital an essential issue.	Access to low interest, long term loans. Environmental benefits may justify subsidies.			
	High risk premium for financing flexible district energy	Risk relates to the uncertainties of future conditions for flexible district energy technologies, especially the capability to deliver the desired return on investment.	Educate credit- assessors to understand projects. Support schemes. Subsidies for pilot projects.			
	Internal limitations from pay-back time and internal rate of return/discount rate requirements	Required short pay-back times can challenge investments in flexible technologies.	Re-evaluation of need for strict hurdle rates. Public guarantees or subsidies to increase certainty.			
	Externally imposed limitations from regulated rate of return	For regulated utilities, rate of return restrictions can disincentivise investment in flexible technologies.	Allow cost-recovery for investments in flexibility measures.			

signalling

Investment Permitting Ownership

Technology Grid access

Physical conditions

Bounded rationality

PERMITTING Technology bans and mandates	DESCRIPTION Obligations to (not) use certain technologies can limit the array of options in district energy.	SOLUTION Evaluate whether requirements align with need. Adjust according to flexibility need.	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
Inadequate legal framework for evaluation of district energy projects	The legal framework for technologies can be lacking or inadequate. E.g. falling between chairs of heat- and electricity regulations.	Ensure that flexibility benefits are reflected in feasibility study guidelines, e.g. by implementing the option of variability in electricity prices.			
Friction in the permitting process	Complexity and uncertainty in permitting can dampen the desire to undertake projects.	Streamline permitting process, e.g. through guidelines or by introducing thresholds under which projects are subject to less stringent permitting.			

Operational

signalling

Investment

Permitting

Ownership

Technology Grid access

Physical

conditions

Bounded rationality

Operational Inv signalling

Investment Permitting

ing Ownership

Technology Grid access

Physical conditions

Bounded rationality

	TECHNOLOGY CONDITIONS	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
-	Limitations in adjustability, ramping and lead time	Technical factors might limit district energy flexibility. E.g. for heat pumps, where ramping and cycling can be limited to avoid wear.	Retrofit cogeneration to enable turbine bypass operation, e.g. by letting minimum turbine load feed into a PTH unit.			
	High technological cost	While district energy can be considered technologically mature, investment can still be substantial.	Support for increased innovation and subsidies or tax rebates.			
	High business process costs	Business process costs are associated with the fixed costs of ownership of an asset. E.g. if flexible power plants have large amounts of personnel.	Provide clarity of context- specific business process costs. Digitalization as measure to improve asset management.			
	Low supply chain maturity	The district energy supply chain can be subject to barriers regarding availability of trained installers, local contractor base and skills of actors.	Long-term policies to allow the supply chain to grow, e.g. by facilitating recruitment in relevant industries.			
· · · _	Limitations in control and visibility	Flexibility in the district energy- electricity system interface depends on the ability to monitor, control and validate performance. E.g. lacking standards regarding communication.	Standardised and secure communication infrastructure between the signal provider and the district energy unit			
	High- temperature systems	High temperature systems reduce ability to use PTH/C and TS.	Modernisation of networks, especially when old steam-based systems are due to retire			13 Flexsus

Investment Permitting

Ownership

Technology Grid access

Physical conditions

Bounded rationality

GRID ACCESS High grid-connection cost	DESCRIPTION High connection charges for coupling to the grid can be prohibitive for new entrants, e.g. if district energy is price- categorized on unequal terms with comparable grid connected technologies.	SOLUTION Non-discriminatory interconnection, e.g. by socialising the cost of cable length to accommodate for different geography.	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
Limiting grid codes	Connection rules can be inconsistent and non-transparent and put limitations on bi- directional power flows.	Standardised interconnection agreements. Performance-based regulation for grid operators to incentivise expedient connection.			
Limiting grid capacity	Local grid can be a constraint if capacity is insufficient to serve the needs of district energy.	Before grid upgrades, smart use of grid with flexible district energy may mitigate the problem.			
					<u>(14)</u>

signalling

Operational Investment Permitting

mitting Ownership

5

Technology Grid access

1~

Physical conditions

141

Bounded rationality

PHYSICAL CONDITIONS	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
Limited access to energy sources	are dependent on energy sources to operate, e.g. heat pumps need heat sources and cogeneration needs fuel.	Mapping of resources together with existing or potential plants			
Land availability	Desired technologies can take up more space than alternatives, especially in urban environments.	Integrate technologies during renovation projects and during the planning of new infrastructure developments.			

- U	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
- 1K		,
- il	7	,
-		

Operational

signalling

Investment Permitting

nitting Ownership

Technology Grid access

1~

Physical conditions

Bounded rationality

	BOUNDED RATIONALITY	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN	
	Limitations from organisational bounded rationality	Absence of awareness, e.g. among heating system operators on the possibility for flexibility.	Increased awareness through information provision, campaigns, financing of feasibility studies or capacity building schemes.				
	Limitations from community bounded rationality	District energy can be dependent on a local community, as an off- taker of the thermal energy and stakeholder in the permitting process.	Well-managed process of information and dialogue, along with introduction of overall and local targets on environment, energy and economy.				
	Limitations from authority bounded rationality	Absent authority recognition of system- wide benefits.	Targets on environment, energy and economy. This impacts authorities by e.g. requirements on renewable energy integration.				
	Limitations from individual plant staff's bounded rationality	Individuals can e.g. be daily operators, lacking experience with new technologies like heat pumps.	Increased awareness through information provision, campaigns, financing of feasibility studies or capacity building schemes.				

Investment Permitting

g Ownership

Technology Grid access

-

Physical conditions

Bounded rationality Acceptance

Flexs

	ACCEPTANCE	DESCRIPTION	SOLUTION	TECHNOLOGY TYPE	PROJECT LIFE CYCLE	LEVEL OF ORIGIN
	Limitations from organisational acceptance	Lack of acceptance and priority can arise from the perception that district energy is not the core business activity, e.g. in university microgrids or industry.	Map organisational needs to align information and company policies, subsequently reducing inertia.			
	Limitations from community acceptance	Systems are subject to influence from the community, both the community covered by the district energy network and outside the area.	Well-managed process of information and dialogue, along with introduction of overall and local targets on environment, energy and economy.			
	Limitations from authority acceptance	Negative perceptions on district energy projects regarding e.g. monopoly supply or reputation can reduce the acceptance among authorities.	Targets on environment, energy and economy. This impacts authorities by e.g. requirements on renewable energy integration.			
	Limitations from incumbent acceptance	Entrance of flexible actors entails a shift in incumbent business models and structures. Potentially a direct competitor to the existing energy supply industry.	Level playing-field among incumbents and new entrants. Regulatory change by unbundling utilities and introducing aggregators			
	Limitations from individual plant staff's acceptance	Absence of organizational power of the individual responsible for e.g. operation.	Empowerment of the individual decision-maker. Restructuring organisational hierarchies.			- (17)

COUNTING BARRIERS: CHP AND PTH/C MOST AFFECTED

Overrepresentation of barriers among CHP and PTH/C indicates that these face the most challenges. Or that literature is biased towards these technologies. The latter applies here and in the subsequent counts.

COUNTING BARRIERS: LIFE CYCLE

While flexibility may intuitively be associated with operation, the strong representation within preceding phases shows that they are just as important. These can collectively be considered the investment phase.

COUNTING BARRIERS: ORIGIN

If you can - for a moment - distract yourself from the fact that this is a Christmas tree, the chart also shows that barrier-count increase from the provider level to the national level. National and regional actions are thus especially important.

CONCLUSION

The **primary barrier is Absence of** *signal-providing scheme*. I.e. there must be signals in the first place, in order to respond with any kind of flexibility.

District energy projects are contextspecific, and the impact of barriers may vary. An electricity tax can for example be very high on one country, low in another.

That said, **none of the barriers appear insurmountable** for an overall increase of flexibility in the interface between district energy and the electricity system.

This initiative has received funding from the European Union's Horizon2020 research and innovation programme under grant agreement No 646039 and No. 775970.